Genomes of biofuel yeasts reveal clues that could boost fuel ethanol production

Nov 05, 2009

As global temperatures and energy costs continue to soar, renewable sources of energy will be key to a sustainable future. An attractive replacement for gasoline is biofuel, and in two studies published online in Genome Research, scientists have analyzed the genome structures of bioethanol-producing microorganisms, uncovering genetic clues that will be critical in developing new technologies needed to implement production on a global scale.

Bioethanol is produced from the fermentation of plant material, such as sugar cane and corn, by the Saccharomyces cerevisae, just as in the production of . However, yeast strains thriving in the harsh conditions of industrial fuel are much more hardy than their beer brewing counterparts, and surprisingly little is known about how these yeast adapted to the industrial environment. If researchers can identify the genetic changes that underlie this adaptation, new yeast strains could be engineered to help shift bioethanol production into high gear across the globe.

Two studies published in Genome Research have taken a major step toward this goal, identifying genomic properties of industrial fuel yeasts that likely gave rise to more robust strains. In one of the studies, researcher Lucas Argueso and colleagues from Duke University and Brazil have sequenced and analyzed the structure of the entire genome of strain PE-2, a prominent industrial strain in Brazil. The group's work revealed that portions of the genome are plastic compared to other yeast strains, specifically the peripheral regions of chromosomes, where they observed a number of sequence rearrangements.

Interestingly, these chromosomal rearrangements in PE-2 amplified genes involved in , which likely contributed to the adaptation of this strain to the industrial environment. As PE-2 is amenable to genetic engineering, the authors believe that their work on PE-2 will open the door to development of new technologies to boost bioethanol production.

In a second study published in Genome Research, researchers from Stanford University and Brazil led by Boris Stambuk and Gavin Sherlock have also analyzed the genome structure of industrial bioethanol yeasts, searching for variations in the number of gene copies in five strains employed in Brazil, including PE-2. Stambuk and colleagues found that all five industrial strains studied harbor amplifications of genes involved in the synthesis of vitamins B6 and B1 - compounds critical for efficient growth and utilization of sugar.

The group experimentally demonstrated that the gene amplifications confer robust growth in industrial conditions, indicating that these yeasts likely adapted to limited availability of vitamins in the industrial process to gain a competitive advantage. Furthermore, the authors suggest that this knowledge can be utilized to engineer new strains of yeast capable of even more efficient bioethanol production, from a wider range of agricultural stocks.

It is evident that an expanding human population will require more that exerts less impact on the environment, and the information gained from these genomic studies of industrial bioethanol yeasts will be invaluable as biofuel researchers optimize production and implement the technology worldwide.

More information: Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Res, doi:10.1101/gr.091777.109

Source: Cold Spring Harbor Laboratory (news : web)

Explore further: Fighting bacteria—with viruses

add to favorites email to friend print save as pdf

Related Stories

Magnets can boost production of ethanol for fuel

Sep 10, 2007

In a finding that could reduce the cost of ethanol fuel, researchers in Brazil report success in using low frequency magnetic waves to significantly boost the amount of ethanol produced through the fermentation of sugar. ...

Engineered yeast speeds ethanol production

Dec 07, 2006

Scientists from Whitehead Institute and MIT have engineered yeast that can improve the speed and efficiency of ethanol production, a key component to making biofuels a significant part of the U.S. energy supply.

On the origin of subspecies

Feb 11, 2009

Scientists have sequenced over seventy strains of yeast, the greatest number of genomes for any species.

Recommended for you

Fighting bacteria—with viruses

12 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

13 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

sender
not rated yet Nov 06, 2009
Forget ethanol yeasts when we can use e.coli for plastics and more complex hydrocarbon substrates.