Bacteria 'invest' wisely to survive uncertain times, scientists report

Nov 02, 2009
Bacteria 'invest' wisely to survive uncertain times, scientists report
This is Dr. Gürol Süel from UT Southwestern Medical Center. Credit: UT Southwestern Medical Center

Like savvy Wall Street money managers, bacteria hedge their bets to increase their chances of survival in uncertain times, strategically investing their biological resources to weather unpredictable environments.

In a new study available online and featured on the cover of today's issue of Cell, UT Southwestern Medical Center researchers describe how bacteria play the market so well. Inside each bacterial cell are so-called genetic circuits that provide specific survival skills. Within the bacteria population, these genetic circuits generate so much diversity that the population as a whole is more tolerant of - and is more likely to survive - a wide range of variability in the environment.

"We have found that a particular genetic circuit is responsible for generating diversity within the bacteria population," said senior author Dr. Gürol Süel, assistant professor of pharmacology and in the Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and at UT Southwestern.

This diversity, like a diversified investment portfolio, means that each bacterium has characteristics that allow it to survive under certain conditions, said Dr. Süel. "When conditions are highly variable, some individual bacteria are equipped to thrive in the highs or lows, while others tank," he said. "It's like the stock market. If you invest all your money in just one stock, and conditions change to lessen or completely eliminate its value, you won't survive financially. Similarly, in the case of these bacteria, if all the cells were adapted to only a small, rigid set of environmental factors, the population would be wiped out if conditions unexpectedly changed.

"There seems to be an optimization going on in these organisms," he added.

By generating diversity, genetic circuits ensure enough cells will survive to carry over the population, especially in times of variable conditions, Dr. Süel explained. Essentially, variability of appears to match the variability in the environment, thereby increasing the chances of bacterial survival, he said.

Genetic circuits are distinct sets of genes and proteins within cells that interact in a specific pattern, resulting in some biological process. In this study, the researchers focused on a genetic circuit within a bacterium that controls the transformation of bacteria cells in and out of a state called competence. Differences in the duration of the competence state have particular survival advantages, depending on the environmental conditions.

Biological "noise" in the genetic circuit, which comes from random fluctuations in the chemical reactions involved in the pattern of interactions, is similar to the undesirable noise - like static heard on AM radio - found in electrical circuits. In biological systems, however, biochemical "noise" is beneficial. In fact, it is the root mechanism that drives diversity within the bacteria population. Dr. Süel previously found that when noise reaches a certain level in some genetic circuits, it can prompt cells to transform from one cellular state to another.

For the current study, the researchers went beyond studying the native genetic circuit. Just as electronic maps can find alternate routes between two points, the UT Southwestern researchers also developed an alternative, synthetic genetic circuit that used a different architecture - or route - to accomplish the same function as the native circuit.

Dr. Süel believes his group is the first to insert such a synthetic into living bacterium and show that it can replace the biological function of the native version. He said his team was surprised to find that the behavior of the synthetic circuit was most precise, essentially generating less noise. The result was a population less diverse than the natural one. They were even more surprised to find that the lack of precision - or greater noisiness - in the native circuit ultimately allows bacteria to survive in a wider range of environments.

"It turns out that sometimes being sloppy can be good," Dr. Süel said. "For these , the more variable they are, the better they will be able to perform because they can adapt to a wider range of environments."

Dr. Süel said this approach of engineering alternative genetic circuits can in principle be applied even to human cells and possibly help explain why diseased cells have different survival capabilities than healthy ones.

Source: UT Southwestern Medical Center (news : web)

Explore further: Students use physics to unpack DNA, one molecule at a time

add to favorites email to friend print save as pdf

Related Stories

Cells use 'noise' to make cell-fate decisions

Mar 22, 2007

Electrical noise, like the crackle heard on AM radio when lightning strikes nearby, is a nuisance that wreaks havoc on electronic devices. But within cells, a similar kind of biochemical “noise” is beneficial, helping ...

Scientists identify potential key to Lyme disease

Feb 09, 2009

Researchers at UT Southwestern Medical Center have identified a protein that may help give Lyme disease its bite. The findings suggest that the bacterial protein, which aids in transporting the metal manganese, is essential ...

Recommended for you

Fighting bacteria—with viruses

4 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

5 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0