Underground mission to Mars

Oct 29, 2009

The Netherlands is home to around 120,000 kilometres of underground gas pipelines. Researcher Edwin Dertien of Dutch University of Twente is working on a robot which can inspect the gas pipelines independently. His long, thin robot will snake its way through the pipe network. “It’s like a mission to Mars, but then underground.”

The Pirate (Pipe Inspection Robot for Autonomous Tunnel Exploration) resembles a miniature train. It is over half a metre in length and has eight wheels. At present it runs on power from a lead that trails behind it, but the design has already incorporated space for a battery so that it will soon be able to zoom around independently. UT researcher Edwin Dertien has been hard at work on the robot since 2006, in collaboration with engineering firm Demcon, network company Alliander and quality control experts Kiwa Gastec.

Preventive measures

Edwin explains what led him to develop the Pirate. "Around 8000 gas leaks are discovered in the Netherlands each year. Some are discovered when people smell gas and some are traced using "sniffing systems" in the form of sensors that can detect gas. The problem with these methods is that you discover the weak points in the pipeline too late, i.e. once a leak has already sprung. The aim of the Pirate is to seek out weak points in the pipeline as a preventive measure."

Mars mission

Building a robot that can travel through gas pipelines may seem relatively simple, but as Edwin explains, the degree of complexity is high. "Travelling straight ahead is not too tricky but the robot encounters all kinds of obstacles in the pipelines, ranging from bends and constrictions to valves and diagonal pipes." An additional factor is that communicating with a robot on the move underground is all but impossible. Edwin compares the project to a Mars mission. "Under those conditions a robot has to negotiate uncharted territory and respond to stimuli that are picked up by its sensors. The robot therefore has to be so smart that it can continue to operate and complete its mission even when faced with disturbances."

T junctions

The Pirate has been designed for pipes with a diameter of between 5 and 12 centimetres. The robot attaches itself to the wall of the pipe by folding its front and rear segments to form an inverted V shape. This clinging technique also enables the robot to travel along diagonal pipes. To make sure that the robot can negotiate bends, the Pirate has a central axle which allows the front and back sections to rotate independently of each other. Edwin is currently refining the robot's steering system with final-year student Harwin Reemeijer. "The trickiest challenge is getting through a right-angled turn, as you would encounter at a T junction. When the front of the robot goes into the turn, it is forced to let go of the wall, which means it loses part of its momentum."

Eyes and ears

Once the robot is fully functional in terms of steering and motion, it will be fitted with sensors which will act as its proverbial eyes and ears. Edwin will fit the robot with a camera and a laser which work in unison so that the robot not only "sees" where it is going and where obstacles lie, but can also measure whether the pipe is round enough and free of dents, which can be caused by tree roots for example. An ultrasonic microphone will function as the robot's ears and listen out for gas escaping from the pipes. Edwin expects that his will be ready to embark on its maiden trip through the Netherlands' gas pipeline network in three to four years' time.

Provided by University of Twente (news : web)

Explore further: Fiber-optic microscope will help physicians detect cancer, diseases at early stages

add to favorites email to friend print save as pdf

Related Stories

The robot that climbs in the pipe

Jun 23, 2008

Industrial pipe systems are inaccessible and narrow. The pipes can be vertical and have junctions. Just as challenging, leakage points in the water system must be located, the condition of oil and gas pipelines must be checked ...

Study finds gas pipelines could serve as wireless links

Dec 12, 2005

Detecting leaks and conducting maintenance in America’s aging network of natural gas pipelines will eventually be a job for wireless robots, according to researchers at the University of Missouri-Rolla.

Snake-like robot conquers obstacles

Mar 22, 2005

A virtually unstoppable "snakebot" developed by a University of Michigan team that resembles a high-tech slinky as it climbs pipes and stairs, rolls over rough terrain and spans wide gaps to reach the other ...

Recommended for you

Smart sensor technology to combat indoor air pollution

Apr 14, 2014

Indoor air quality (IAQ) influences the health and well-being of people but for the last 20 years there has been a growing concern about pollutants in closed environments, the difficulty in identifying them ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 30, 2009
Maybe somethig useful for bona fide Mars missions -mainly, for exploring the *lava tube caves* that are expected to exist under much of the surface of the Moon and Mars, providing shelter from radiation for future astronauts on extended missions.

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...