Research May Help Plants, Humans Survive Stress, Disease

Oct 27, 2009
Research May Help Plants, Humans Survive Stress, Disease
David Galbraith

(PhysOrg.com) -- New technology to analyze gene expression at the level of different cell types offers new insights in the ways that plants and animals react to the environment and how they change when they are diseased.

A University of Arizona researcher's work on could help protect plants from stresses like heat and drought, and even help people survive diseases like cancer.

A new technology to analyze gene expression at the level of different cell types offers new insights in the ways that plants and animals react to the environment and how they change when they are diseased, said David W. Galbraith, a UA plant sciences professor and member of the BIO5 Institute.

Galbraith is a co-author of a paper on the topic that will appear in the .
"What we recognize as a specific part of a plant, such as a leaf or a root, in fact is made up from many different types of cells," Galbraith said.

In leaves, some cells are for , some are for transporting sugar and some are to externally protect the plant, he said. The techniques Galbraith and his collaborator, Julia Bailey-Serres at the University of California, Riverside, developed allow researchers to find out how these different cell types function.

"When you apply stress to a plant, the numbers and identities of proteins being produced change dramatically. Stress can be drought, salt or heat," Galbraith said. "Now we can tell within specific cell types how the plants react.
"In this paper, we focus on the core machinery of the cells, called ribosomes, that manufacture proteins. We now can tell you exactly which proteins are being made in different cell types," he said.

"It is important to have the right scientific measurement tools to understand what is going on. Using these tools will allow us to have a greater understanding of how these cell types are different from one another. Our goal has been to develop these tools, and this paper describes one of them."

This could help plant life survive challenges like drought or diseases by allowing researchers to monitor the cell types most responsible for handling stress.

"This gives a better understanding of how plants react to the environment," Galbraith said. "This is not just that if they are dry they wilt.

"If you had an attack by pathogens, or something like that, looking at cell type specific responses is crucial, since the first response will be from the external cells," he said. "The more we understand the subtleties of how genes are expressed, the more we can go in and start to modulate or change that capability."

This could offer researchers the ability to develop hardier plants that continue to be productive under challenging conditions, he said, including climate change.

"There is a chance you can devise ways to protect from stresses like ," Galbraith said. "One way is genetic engineering, or you could find chemicals that would induce the plant to produce proteins that protect itself. But in either case you need our methods to understand the best way to proceed."

In addition to improving agricultural food supplies, the research could offer a better handle on how to recognize and treat human diseases, he said.

"It allows you to look at how stresses and diseases impact humans," Galbraith said. "In cancer you can take a sample, see what is going on in the different cancer cell types and this should provide clues as to the best treatment."

Provided by University of Arizona (news : web)

Explore further: Fighting bacteria—with viruses

add to favorites email to friend print save as pdf

Related Stories

Plant Scientists Develop New Cell-Sorting Technique

Jun 04, 2008

A new cell-sorting technique developed by University of Arizona plant scientists has the potential to enhance our understanding of how cells of all types work – or, in the case of diseases such as cancer, how they fail ...

New gene that helps plants beat the heat

Oct 07, 2008

Michigan State University plant scientists have discovered another piece of the genetic puzzle that controls how plants respond to high temperatures. That may allow plant breeders to create new varieties of crops that flourish ...

Scientists find stem cell switch

Jul 26, 2007

Scientists have discovered how plant stem cells in roots detect soil structure and whether it is favourable for growth.

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0