32 New Exoplanets Found (w/ Video)

Oct 19, 2009
On 19 October 2009, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO’s 3.6-metre telescope, reported on the incredible discovery of some 32 new exoplanets, cementing HARPS’s position as the world’s foremost exoplanet hunter. One of these is surrounding the star Gliese 667 C, which belongs to a triple system. The 6 Earth-mass exoplanet circulates around its low-mass host star at a distance equal to only 1/20th of the Earth-Sun distance. The host star is a companion to two other low-mass stars, which are seen here in the distance.

(PhysOrg.com) -- Today, at an international ESO/CAUP exoplanet conference in Porto, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO's 3.6-metre telescope, reports on the incredible discovery of some 32 new exoplanets, cementing HARPS's position as the world’s foremost exoplanet hunter. This result also increases the number of known low-mass planets by an impressive 30%. Over the past five years HARPS has spotted more than 75 of the roughly 400 or so exoplanets now known.

"HARPS is a unique, extremely high precision instrument that is ideal for discovering alien worlds," says Stéphane Udry, who made the announcement. “We have now completed our initial five-year programme, which has succeeded well beyond our expectations.”

This video is not supported by your browser at this time.
On 19 October 2009, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO’s 3.6-metre telescope, reported on the incredible discovery of some 32 new exoplanets, cementing HARPS’s position as the world’s foremost exoplanet hunter. One of these is surrounding the star Gliese 667 C, which belongs to a triple system. The 6 Earth-mass exoplanet circulates around its low-mass host star at a distance equal to only 1/20th of the Earth-Sun distance. The host star is a companion to two other low-mass stars, which are seen here in the distance.

The latest batch of exoplanets announced today comprises no less than 32 new discoveries. Including these new results, data from HARPS have led to the discovery of more than 75 exoplanets in 30 different planetary systems. In particular, thanks to its amazing precision, the search for small , those with a mass of a few times that of the Earth — known as super-Earths and Neptune-like planets — has been given a dramatic boost. HARPS has facilitated the discovery of 24 of the 28 planets known with masses below 20 Earth masses. As with the previously detected super-Earths, most of the new low-mass candidates reside in multi-planet systems, with up to five planets per system.

In 1999, ESO launched a call for opportunities to build a high resolution, extremely precise spectrograph for the ESO 3.6-metre at La Silla, Chile. Michel Mayor, from the Geneva Observatory, led a consortium to build HARPS, which was installed in 2003 and was soon able to measure the back-and-forward motions of stars by detecting small changes in a star’s radial velocity — as small as 3.5 km/hour, a steady walking pace. Such a precision is crucial for the discovery of exoplanets and the radial velocity method, which detects small changes in the radial velocity of a star as it wobbles slightly under the gentle gravitational pull from an (unseen) exoplanet, has been most prolific method in the search for exoplanets.
In return for building the instrument, the HARPS consortium was granted 100 observing nights per year during a five-year period to carry out one of the most ambitious systematic searches for exoplanets so far implemented worldwide by repeatedly measuring the radial velocities of hundreds of stars that may harbour planetary systems.

The programme soon proved very successful. Using HARPS, Mayor’s team discovered — among others — in 2004, the first super-Earth (around µ Ara); in 2006, the trio of Neptunes around HD 69830; in 2007, Gliese 581d, the first super Earth in the habitable zone of a small star; and in 2009, the lightest so far detected around a normal star, Gliese 581e. More recently, they found a potentially lava-covered world, with density similar to that of the Earth’s.

“These observations have given astronomers a great insight into the diversity of planetary systems and help us understand how they can form,” says team member Nuno Santos.

The HARPS consortium was very careful in their selection of targets, with several sub-programmes aimed at looking for planets around solar-like stars, low-mass dwarf stars, or stars with a lower metal content than the Sun. The number of exoplanets known around low-mass stars — so-called M dwarfs — has also dramatically increased, including a handful of super Earths and a few giant planets challenging planetary formation theory.

“By targeting M dwarfs and harnessing the precision of HARPS we have been able to search for exoplanets in the mass and temperature regime of super-Earths, some even close to or inside the habitable zone around the star,” says co-author Xavier Bonfils.

The team found three candidate exoplanets around stars that are metal-deficient. Such stars are thought to be less favourable for the formation of planets, which form in the metal-rich disc around the young star. However, planets up to several Jupiter masses have been found orbiting metal-deficient stars, setting an important constraint for planet formation models.

Although the first phase of the observing programme is now officially concluded, the team will pursue their effort with two ESO Large Programmes looking for super-Earths around solar-type stars and M dwarfs and some new announcements are already foreseen in the coming months, based on the last five years of measurements.

Provided by ESO (news : web)

Explore further: Millisecond pulsars clearly demonstrate that pulsars are neutron stars

add to favorites email to friend print save as pdf

Related Stories

Astronomers find potentially habitable Earth-like planet

Apr 25, 2007

Astronomers have discovered the most Earth-like planet outside our Solar System to date, an exoplanet with a radius only 50% larger than the Earth and capable of having liquid water. Using the ESO 3.6-m telescope, ...

A trio of super-Earths

Jun 16, 2008

Today, at an international conference, a team of European astronomers announced a remarkable breakthrough in the field of extra-solar planets. Using the HARPS instrument at the ESO La Silla Observatory, they ...

Scientists discover a nearly Earth-sized planet (Update)

Apr 21, 2009

(PhysOrg.com) -- Exoplanet researcher Michel Mayor announces the discovery of the lightest exoplanet found so far. The planet, "e," in the system Gliese 581, is only about twice the mass of our Earth. The ...

Astronomers Find Neptune-Mass Planet Around Small Star

Nov 30, 2005

A team of French and Swiss astronomers have discovered one of the lightest exoplanets ever found using the HARPS instrument on ESO's 3.6-m telescope at La Silla (Chile). The new planet orbits a star belonging ...

Undercover Stars Among Exoplanet Candidates

Mar 03, 2005

An international team of astronomers have accurately determined the radius and mass of the smallest core-burning star known until now. The observations were performed in March 2004 with the FLAMES multi-fibre ...

Recommended for you

How small can galaxies be?

20 hours ago

Yesterday I talked about just how small a star can be, so today let's explore just how small a galaxy can be. Our Milky Way galaxy is about 100,000 light years across, and contains about 200 billion stars. Th ...

The coolest stars

21 hours ago

One way that stars are categorized is by temperature. Since the temperature of a star can determine its visual color, this category scheme is known as spectral type. The main categories of spectral type are ...

Simulations reveal an unusual death for ancient stars

21 hours ago

(Phys.org) —Certain primordial stars—those 55,000 and 56,000 times the mass of our Sun, or solar masses—may have died unusually. In death, these objects—among the Universe's first-generation of stars—would ...

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

Birthmark
not rated yet Oct 19, 2009
This century we'll be finding thousands, even the smallest planets, but it'll still be a while until we can get there unless they come up with some type of sun powered, or plasma ship to get there at half the speed of light.
Mr_Man
not rated yet Oct 19, 2009
This century we'll be finding thousands, even the smallest planets, but it'll still be a while until we can get there unless they come up with some type of sun powered, or plasma ship to get there at half the speed of light.


We won't be sending any ships out at half the speed of light or anything close to that considering how much energy that would require.

It would be more a situation where we send a ship off to a habitable planet and by the time the ship gets there (if it gets there) the people that boarded the ship will be long dead. It would be generations after generations of those original people that would exit the ship.
steveor
not rated yet Oct 20, 2009
I dont think that this story is about ships to other planets, or generations of people.
probes
1 / 5 (1) Oct 20, 2009
You would need a VISIMR drive running at 1KW to get there in 39 seconds.
bhiestand
not rated yet Oct 21, 2009
I think it's a lot more likely we'd send unmanned probes. I also don't think we're too far away from being able to send decent Von Neumann probes. Also pretty likely we'd do something silly, like contaminate them :)
Birthmark
not rated yet Oct 22, 2009
Well Mr Man
We won't be sending any ships out at half the speed of light or anything close to that considering how much energy that would require.

It would be more a situation where we send a ship off to a habitable planet and by the time the ship gets there (if it gets there) the people that boarded the ship will be long dead. It would be generations after generations of those original people that would exit the ship.


I was watching a show about space travel, and they have a theory or model on how they can make an unmanned craft go half the speed of light, and I forget how they do this but they use the sun. I think technology will evolve much faster than you think, maybe this technology will be ready within the century, and they have ideas for traveling at infinite speeds (that's a few hundred years away lol).