Scientists visualize assembly line gears in ribosomes, cell's protein factory

Oct 15, 2009

Even as research on the ribosome, one of the cell's most basic machines, is recognized with a Nobel Prize, scientists continue to achieve new insights on the way ribosomes work.

Ribosomes are factories inside cells where messages coming from genes are decoded and new proteins pieced together on an assembly line. For the first time, scientists have a detailed picture of the ribosome trapped together with elongation factor G (EF-G), one of the enzymes that nudges the assembly line to move forward.

The results are published in the Oct. 16 issue of Science magazine.

A team led by Venki Ramakrishnan at the MRC Laboratory of in Cambridge, England analyzed of the ribosome bound to EF-G using X-rays, and used the X-ray data to determine the molecular structure.

One member of the team, Christine Dunham, PhD, recently joined Emory University School of Medicine's Department of Biochemistry as an assistant professor.

The scientists obtained crystals by growing heat-tolerant bacteria found at thermal vents at the bottom of the ocean. They purified the from the bacteria and then added polymers carefully selected to coax the ribosomes into lining up and forming crystals. In addition, they included an antibiotic - fusidic acid - which traps EF-G on the ribosome.

Previous efforts to crystallize ribosomes together with EF-G led to EF-G being displaced from the crystals. Dunham says the team was able to visualize the ribosome bound to EF-G only by shaving off part of the ribosome. Modifying the bacterial gene that encoded a part of the ribosome with a "very strange and elongated protein shape" allowed crystals that included EF-G to form.

Dunham says details from the new structure show that EF-G interacts closely with parts of the ribosome, suggesting how it moves the assembly line forward without slipping out of frame. In addition, it paves the way for studying interactions between the ribosome and other proteins similar to EF-G that fit into the same spot.

In her own research, Dunham is examining how viruses such as HIV, upon hijacking ribosomes, use special tricks that cause the assembly line to slip, as well as how other antibiotics and toxin proteins interact with parts of the ribosome.

More information: Y.G. Gao, M. Selmer, C.M. Dunham, A. Weizlbaumer, A.C. Kelley and V. Ramakrishnan. The structure of the ribosome with elongation factor G trapped in the post-translocational state. Science XX, YY (2009)

Source: Emory University (news : web)

Explore further: Sugar mimics guide stem cells toward neural fate

add to favorites email to friend print save as pdf

Related Stories

Biologists probe the machinery of cellular protein factories

Sep 13, 2006

Proteins of all sizes and shapes do most of the work in living cells, and the DNA sequences in genes spell out the instructions for making those proteins. The crucial job of reading the genetic instructions and synthesizing ...

Molecular sleuths track evolution through the ribosome

Aug 18, 2008

A new study of the ribosome, the cell's protein-building machinery, sheds light on the oldest branches of the evolutionary tree of life and suggests that differences in ribosomal structure between the three ...

Scientists discover how some bacteria survive antibiotics

Apr 30, 2008

Researchers at the University of Illinois at Chicago have discovered how some bacteria can survive antibiotic treatment by turning on resistance mechanisms when exposed to the drugs. The findings, published in the April 24 ...

Recommended for you

Sugar mimics guide stem cells toward neural fate

7 hours ago

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

Researchers uncover secrets of internal cell fine-tuning

Jul 29, 2014

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

User comments : 0