Rensselaer researchers to develop and test next-generation radar systems

Sep 30, 2009
Rensselaer researchers to develop and test next-generation radar systems
Professor Birsen Yazici at Rensselaer Polytechnic Institute is leading a new project to develop and test radar systems comprised of hundreds of miniature sensors communicating with ground sensors, unpiloted aerial vehicles, and satellites. Such a system could allow radars to be used in crowded cities and other urban environments. Credit: Rensselaer Polytechnic Institute

Researchers at Rensselaer Polytechnic Institute have received a grant for $792,000 from the U.S. Air Force to create a new laboratory for developing and testing next-generation radar systems that overcome one of the key limitations of conventional radars.

The new test bed, led by Birsen Yazici, associate professor of electrical, computer, and systems engineering, will allow simulations of radar systems that are comprised of hundreds of miniature sensors communicating with ground sensors, unpiloted aerial vehicles, and satellites. Such a system could allow radars to be used in crowded cities and other urban environments.

"Conventional radar systems are designed for open spaces, and they do not work very well when used in urban environments with clutter from power lines, buildings, and dynamically changing elements like vehicles and people," Yazici said. "Active distributed and layered sensing, which is what we are doing, offers a whole new paradigm that addresses these challenges. The new test bed will be a huge step toward making these theoretical systems a reality."

The grant was awarded by the U.S. Air Force Office of Scientific Research. Margaret Cheney, professor of mathematics at Rensselaer, and Kenneth Connor, professor of electrical, computer, and systems engineering at Rensselaer, are co-investigators on the project.

Radar plays an important role in transportation, communications, and other applications because can pass through clouds, smoke, and other obstructions that often limit visibility, Yazici said. However, the usefulness of radar in cities and urban environments is quite limited due to their dynamically changing nature, as well as radio signal echoing. Just as echoes can make auditorium speakers difficult to understand, radar gets muddled when there are extra signals bouncing off different objects in an area.

Yazici and her colleagues have worked for some time to develop theoretical models in which conventional radar systems are replaced or augmented by many small, inexpensive radio frequency (RF) sensors that are stationary or deployed on air, space, or ground vehicles. These swarms of RF sensors communicate and share data and instructions in real-time, have access to established data networks and databases, and are programmed to autonomously adapt to changing environments and goals.

To simulate such a system, the new test bed will position antennas in a large cylindrical chamber. The antennas will transmit and receive test signals, resulting in an extensive collection of data that is equivalent to that obtained with hundreds of small RF sensors. The 25-foot diameter chamber will be situated in Rensselaer's Watervliet research facility.

The capabilities of the test bed will include developing accurate and simple wave propagation models for complex environments; performing experiments with waveform, polarization, and 3-D spatial diversity and time-reversal methodology; as well as testing and evaluating new capabilities in opportunistic sensing, passive imaging, wide-aperture imaging, integrated sensing and processing, and moving target imaging.

Yazici said the new test bed will also promote the transfer and exchange of ideas and capabilities with federal laboratories, serve as a shared facility for Rensselaer and the Air Force Research Laboratory, and facilitate interdisciplinary and multi-university research in sensing, medical imaging, networking, robotics, advanced antennas, and control of stray RF energy from power systems. It will also be used for education, outreach, and training activities involving radar and other RF technologies.

More information: For more information on the new the RF test bed visit: hibp.ecse.rpi.edu/~connor/RF/T… ography/Testbed.html

Source: Rensselaer Polytechnic Institute (news : web)

Explore further: Student develops filter for clean water around the world

add to favorites email to friend print save as pdf

Related Stories

Sandia develops secure wireless technology

Jun 22, 2005

Project considered milestone for next generation of secure wireless networks Sandia National Laboratories in cooperation with Time Domain Corporation and KoolSpan Inc. has developed a secure wireless Ultra Wideband (UWB) ...

Detecting human activities through barriers

Sep 25, 2008

University of Texas professor Hao Ling and Ph.D. candidate, Shobha Ram, are one step closer to making x-ray vision a reality. They are perfecting radar systems that can detect human activities through barriers ...

Stealth radar system sees through trees, walls -- undetected

Jun 26, 2006

Ohio State University engineers have invented a radar system that is virtually undetectable, because its signal resembles random noise. The radar could have applications in law enforcement, the military, and disaster rescue.

Recommended for you

Student develops filter for clean water around the world

18 hours ago

Roughly 780 million people around the world have no access to clean drinking water. According to the World Health Organization (WHO), 3.4 million people die from water-related diseases every year. ETH student Jeremy Nussbaumer ...

Minimising drag to maximise results

22 hours ago

One of the most exciting parts of the Tour de France for spectators is the tactical vying for spots in the breakaway group at the front of the pack.

User comments : 0