PNNL chemist earns NIH New Innovator Award

Sep 24, 2009
PNNL chemist earns NIH New Innovator Award
The National Institutes of Health recognized PNNL's Wei-Jun Liu for innovative and creative research in proteomics, the study of an organism's cellular workhorses -- proteins. Credit: Pacific Northwest National Laboratory

An analytical chemist at the Department of Energy's Pacific Northwest National Laboratory has been recognized with a National Institutes of Health Director's New Innovator Award. The award will support Wei-Jun Qian's drive to make new research and clinical diagnostic tools that are dramatically more sensitive, reliable and faster than current technologies.

The award, which comes with a $1.5 million, five-year grant, recognizes researchers early in their careers. Qian has been studying -- or the proteins that make organisms work -- at PNNL only since 2002 but has already published more than 60 scientific papers. NIH selected projects that show creativity and are considered high-risk ventures but with the potential to make a significant impact.

"This is great news for Wei-Jun and highlights the significant instrument development capabilities at PNNL," said Doug Ray, director of Fundamental & Computational Sciences at PNNL. "Not many DOE researchers earn such a prestigious NIH award. For his first grant, this is a major achievement."

Qian earned this honor for his proposal to increase the ability of research tools to detect diagnostic in blood or tissue enough so they can replace conventional tools. When patients enter clinics now, they donate up to an ounce or two of blood so that multiple tests can be done. Each test -- for cholesterol, liver health, or cancer markers -- is generally performed seperately. A slate of 20 tests is far more labor and time intensive than just one. Qian would like to develop a single test for 20 diseases.

Research laboratories such as those found in EMSL, DOE's molecular sciences laboratory on the PNNL campus, have instruments called mass spectrometers that can identify hundreds of proteins and other molecules floating in a drop of that ounce of blood. Although much faster, the instruments aren't sensitive and accurate enough to compare with the clinical lab tests done one at a time.

"We are aiming to increase the sensitivity of our instrument so that we can detect proteins whose concentrations in blood are very low, and at the same time accurately measure their concentration for hundreds of different proteins -- perhaps up to a thousand," said Qian. "We hope this platform will lead to a paradigm change in how clinics do their testing."

Qian's plan will pull together tools that have been in development by the proteomics team at PNNL and EMSL for several years, but it will also require developing new technologies. The complete instrument identifies molecules in a sample such as blood by first separating them by size and shape and then measuring their mass as they flow past a detector.

Because different molecules can have the same mass, the technique breaks down molecules and identifies smaller pieces, which computer programs then recognize as belonging to certain molecules. Different molecules of the same mass will break into different pieces, much as the pieces of a 30-pound bike will be different from those of a 30-pound coffee table.

To improve the instruments' ability to detect rare molecules, Qian and his group have to increase the percentage of molecules in the sample that make it into the instrument at the beginning, as well as how many can be identified individually near the end. To improve the identification of individual molecules, Qian proposed that breaking down fragments into even more pieces will increase the resolving power of the detector.

"Eventually, the instrument will find a piece that is so unique we know which molecule it had to come from," Qian said.

Although such an instrument might replace current clinical tests someday, it will be equally valuable in the research laboratory, enabling scientists to screen many samples much faster than they are capable of now. This will cut down the time to find biomarkers -- proteins in the blood that indicate disease. For example, breast cancer researchers have identified almost 1000 proteins that show up or disappear, depending on the protein, when cancer is present. This technology could speed up the experiments needed to determine which of those are important for diagnosing illness.

Source: DOE/Pacific Northwest National Laboratory

Explore further: Healthy fractions of oats efficiently recovered

add to favorites email to friend print save as pdf

Related Stories

Googling brain proteins with 3-D goggles

Feb 15, 2007

The Allen Brain Atlas, a genome-wide map of the mouse brain on the Internet, has been hailed as “Google of the brain.” The atlas now has a companion or the brain’s working molecules, a sort of pop-up ...

A probable cause for Parkinson's?

Jun 28, 2006

Parkinson's, Alzheimer's, Lou Gehrig's disease and other brain disorders are among a growing list of maladies attributed to oxidative stress, the cell damage caused during metabolism when the oxygen in the body assumes ever ...

Carnegie Mellon scientist to build unique mass spectrometer

Jan 11, 2006

Carnegie Mellon University's Mark Bier has received a $546,000 grant from the National Science Foundation's Instrument Development for Biological Research program to build a heavy-ion mass spectrometer. This one-of-a-kind ...

Recommended for you

Developing the battery of the future

11 hours ago

The search for the next generation of batteries has led researchers at the Canadian Light Source synchrotron to try new methods and materials that could lead to the development of safer, cheaper, more powerful, ...

Water purification at the molecular level

20 hours ago

(Phys.org) —Fracking for oil and gas is a dirty business. The process uses millions of gallons of water laced with chemicals and sand. Most of the contaminated water is trucked to treatment plants to be ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.