Fish fend off invading germs with an initial response similar to the one found in people

Sep 24, 2009

Since the human response to infection is highly complex, research to understand how people fight infection is facilitated by studying how similar processes occur in simpler organisms. Zebrafish are becoming an important model for human disease, since they are easily handled, maintained and manipulated and many fundamental processes between zebrafish and humans are conserved. In addition, the small zebrafish embryo is highly amenable to drug screening assays.

The functional similarity between the initial responses of embryo and humans to suggests that the zebrafish embryo may be a valuable model for understanding early immune responses and identifying potential therapeutics for infection or immune mediated disease. However, the initial response of zebrafish to infection and how it compares to the human response is not well understood.

When humans first encounter germs, like viruses or bacteria, the first stage of a two-part inflammatory response is triggered, which is termed the innate immune response. During this early phase, proteins are made around the site of infection to initiate the body's defense system and to recruit circulating immune cells, which begins the inflammatory process. A family of proteins that are critical to instigating the immune response are the interferons (IFN), particularly IFN-γ.

Scientists now report that IFN-γ is also produced in zebrafish when they are exposed to bacteria that cause disease in fish. These studies use developing zebrafish embryos whose response to infection is isolated to the innate immune response. Since the zebrafish embryo only demonstrates innate immunity, it allows for specific study of the effects of IFN-γ on these early events. This study demonstrates that both zebrafish and human IFN-γ proteins function in much the same way, despite having very distinct protein structures. In both zebrafish and humans, IFN-γ triggers the production of an array of proteins that rally the defense mechanisms of the infected cell and activate the immune system. They also found that compromising the ability of the zebrafish embryos to produce IFN-γ impairs the fish's ability to survive infection. Thus, the zebrafish embryo may provide a very simple model to understand the innate .

Interestingly, large quantities of , which would cause septic shock -- a potentially fatal condition -- in humans, do not elicit the same response in zebrafish. This suggests that some key differences between the immune systems of zebrafish and humans may also provide insight into harmful events associated with inflammation.

The characterization of IFN-γ function in zebrafish is presented in the Research Article titled 'The role of gamma interferon in innate inity in the zebrafish embryo', which was written by Dirk Sieger, Cornelia, David Neifer and Maria Leptin at the University of Cologne in Germany and Astrid van der Sar at the VU University Medical Center in Amsterdam in The Netherlands.

More information: The study is published in the November/December 2009 issue of the new research journal, Disease Models & Mechanisms (DMM), http://dmm.biologists.org/, published by The Company of Biologists, a non-profit based in Cambridge, UK.

Source: The Company of Biologists (news : web)

Explore further: Research helps steer mites from bees

add to favorites email to friend print save as pdf

Related Stories

Zebrafish provide a model for cancerous melanoma in humans

May 26, 2009

In a new study published in Disease Models & Mechanisms, scientists use the zebrafish to gain insight into the influence of known cancer genes on the development and progression of melanoma, an aggressive form of human skin c ...

Zebrafish mutation studied

Nov 14, 2005

Harvard Medical School scientists say they've found a small molecule that suppresses the phenotype of a zebrafish mutation.

Zebrafish: It's not your parents' lab rat

Jul 30, 2007

Zebrafish cost about a dollar at the pet store. They grow from eggs to hunting their own food in three days. Adults can lay up to 500 eggs at once… and you have more in common with them than you think.

Zebrafish study shows key enzyme in gut is a peacemaker

Dec 12, 2007

University of Oregon scientists, using zebrafish to study the gastrointestinal tract, say that an enzyme long assumed to be involved in digestion instead is a detoxifying traffic cop, maintaining a friendly rapport between ...

Recommended for you

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

Bird brains more precise than humans'

Sep 19, 2014

(Phys.org) —Birds have been found to display superior judgement of their body width compared to humans, in research to help design autonomous aircraft navigation systems.

User comments : 0