Blueprint from the interior of a catalyst

Sep 22, 2009

Irregularities in industrial catalysts can inhibit the conversion of crude oil, Utrecht University chemists have concluded. They were the first to provide a detailed blueprint of the interior of a commercially used catalyst for e.g. the production of transportation fuels from crude oil. They discovered a large number of dead ends. Their findings can contribute to the development of new and improved catalytic materials for the chemical industry. The study has been online published in the scientific journal Nature Materials.

In collaboration with various international research groups, Professor Bert Weckhuysen and PhD students Lukasz Karwacki and Marianne Kox of Utrecht University have studied the internal architecture of zeolite materials in great detail.

These catalysts can be compared to Swiss cheeses, containing molecular-sized holes and channels. Zeolites play a crucial role as catalyst materials in the (petro-) chemical industry to convert into transportation fuels, such as kerosene, diesel and gasoline. In this process, which is called catalytic cracking, crude oil is forced through the Swiss cheese ‘channels’ where it is split into smaller fractions. In this way, long crude oil molecules are cut up, for example, into gasoline molecules. However, the researchers discovered that not all of the zeolite channels are equally accessible.

Using a combination of various advanced microscopic techniques, the researchers created a blueprint of the catalyst showing that the materials contain a regular pattern of different channel obstructions. They found for example that a large number of zeolite channels are not open-ended. This disruption of the channel layout means the catalyst does not function optimally.

‘The molecules reach ‘dead ends’ in the zeolite crystal and the only option is to turn back,’ says Professor Bert Weckhuysen. ‘But that’s not possible, because there’s already a queue of molecules behind them. From a practical point of view, this means that the advantages of zeolite catalysts are only partially exploited.’

More information: ; doi:10.1038/NMAT2530

Provided by NWO

Explore further: Efficient synthesis of polyurethane raw materials from carbon dioxide

add to favorites email to friend print save as pdf

Related Stories

Watching Catalytic Reactions from Within

Jan 29, 2009

(PhysOrg.com) -- Researchers from Utrecht University, in The Netherlands, have demonstrated a new way to get a real-time, microscopic view of the inner workings of catalytic reactions.

Halting methane squanderlust

May 21, 2008

The pipes that rise from oil fields, topped with burning flames of natural gas, waste fossil fuels and dump carbon dioxide into the air. In new work, researchers have identified the structure of a catalytic material that ...

Growing catalysts

Dec 08, 2006

Porous materials are involved in many chemical reactions that affect our daily lives. Despite their wide use, there is little knowledge about them. Scientists from the Netherlands, United Kingdom and the ESRF ...

'Green' gasoline on the horizon?

Jan 13, 2009

University of Oklahoma researchers believe newer, more environmentally friendly fuels produced from biomass could create alternative energy solutions and alleviate dependence on foreign oil without requiring changes to current ...

Recommended for you

Electronic switches on the molecular scale

23 hours ago

A molecular electronic switch is a junction created from individual molecules that can alternate between two or more stable states, making the switch act as a conductor or an insulator. These switches show ...

Mimicking photosynthesis with man-made leaves

23 hours ago

Scientists have long been trying to emulate the way in which plants harvest energy from the sun through photosynthesis. Plants are able to absorb photons from even weak sunlight using light antennae made ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.