New multi-use device can shed light on oxygen intake

Sep 22, 2009 by Brian Wallheimer
Mohammad Rameez Chatni, at left, and Marshall Porterfield developed the self-referencing optrode that can measure oxygen intake in real time. Credit: Purdue Agricultural Communications photo/Tom Campbell

(PhysOrg.com) -- A fiber-optic sensor created by a team of Purdue University researchers that is capable of measuring oxygen intake rates could have broad applications ranging from plant root development to assessing the effectiveness of chemotherapy drugs.

The self-referencing optrode, developed in the lab of Marshall Porterfield, an associate professor of agricultural and biological engineering, is non-invasive, can deliver real-time data, holds a calibration for the sensor's lifetime and doesn't consume oxygen like traditional sensors that can compete with the sample being measured. A paper on the device was released on the early online version of the journal The Analyst this week.

"It's very sensitive in terms of the biological specimens we can monitor," Porterfield said. "We don't only measure , we measure the flux. That's what's important for biologists."

Mohammad Rameez Chatni, a doctoral student in Porterfield's lab, said the sensor could be used broadly across disciplines. Testing included , fish eggs, spinal cord material and plant roots.

Cancerous cells typically intake oxygen at higher rates than healthy cells, Chatni said. Measuring how a chemotherapy drug affects oxygen intake in both kinds of cells would tell a researcher whether the treatment was effective in killing tumors while leaving healthy cells unaffected.

Plant biologists might be interested in the sensor to measure oxygen intake of a genetically engineered plant's roots to determine its ability to survive in different types of soil.

"This tool could have applications in biomedical science, agriculture, material science. It's going across all disciplines," Chatni said.

The sensor is created by heating an optical fiber and pulling it apart to create two pointed optrodes about 15 microns in diameter, about one-tenth the size of a human hair. A membrane containing a fluorescent dye is placed on the tip of an optrode.

Oxygen binds to the fluorescent dye. When a blue light is passed through the optrode, the dye emits red light back. The complex analysis of that red light reveals the concentration of oxygen present at the tip of the optrode.

The optrode is oscillated between two points, one just above the surface of the sample and another a short distance away. Based on the difference in the oxygen concentrations, called flux, the amount of oxygen being taken in by the sample is calculated.

It's the intake, or oxygen transportation, that Porterfield said is important to understand.

"Just knowing the concentration in or around a sample will not necessarily correlate to the underlying biological processes going on," he said.

Porterfield said future work will focus on altering the device to measure things such as sodium and potassium intake as well. The National Science Foundation funded the research.

Source: Purdue University (news : web)

Explore further: Video: How did life on Earth begin?

add to favorites email to friend print save as pdf

Related Stories

A Good Eye for Oxygen

Mar 27, 2009

(PhysOrg.com) -- We cannot live without it; yet too much of it causes damage: oxygen is a critical component of many physiological and pathological processes in living cells. Oxygen deficiency in tissues is thus related to ...

Simultaneous carbon dioxide and oxygen sensing

Jun 21, 2006

Breathing. Birds, do it, bees do it, even educated trees do it. But, only plants can make sugars from the carbon dioxide byproduct and at the same time expel oxygen during photosynthesis. This amazing skill has intrigued ...

Better life support for artificial liver cells

Aug 23, 2007

Researchers at Ohio State University are developing technology for keeping liver cells alive and functioning normally inside bioartificial liver-assist devices (BLADs).

Nano-tetherball biosensor precisely detects glucose

Jan 22, 2009

(PhysOrg.com) -- Researchers have created a precise biosensor for detecting blood glucose and potentially many other biological molecules by using hollow structures called single-wall carbon nanotubes anchored ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

Sep 15, 2014

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

User comments : 0