Regulatory role of key molecule discovered

Sep 17, 2009
Regulatory role of key molecule discovered at Hebrew U.
This is Nurit Yanay-Cohen, one of the researchers who discovered a key molecule involved in gene expression. Credit: Hebrew University of Jerusalem

Discovery by Hebrew University of Jerusalem researchers of an additional role for a key molecule in our bodies provides a further step in world-wide efforts to develop genetic regulation aimed at controlling many diseases, including AIDS and various types of cancers.

The molecule, known as Lysyl-tRNA synthetase (or LysRS in brief) is one of the most ancient in the cell, where it has long been recognized for its contribution in the translation of the information contained in RNA into the that make up proteins. Amino acids are which are present in and vital to every living cell.

Now, the Hebrew University scientists have discovered that LysRS plays an important additional role as a central regulator controlling expression of various genes. In this additional role, LysRS ceases its previous function at a certain point and participates in a chain of events that causes the freeing of inhibitors that prevent expression of certain genes.

The researchers say that this research has particularly great importance, since LysRS is known to be involved in diseases such as AIDS and cancers. The virus HIV uses the host's cellular LysRS in the process of replication. High levels of LysRS also have been observed in certain cancers, such as . The specific molecular mechanisms in these contexts remain to be discovered.

An ability to understand the regulatory effect played by LysRS in various diseases could make an important contribution to the worldwide search for therapies that would control the "turning on" or "turning off" of specific genes that are operative in those diseases, they emphasize.

This work was published in the journal Molecular Cell.

Source: The Hebrew University of Jerusalem

Explore further: Estrogen helps calm stressed cells, researchers find

add to favorites email to friend print save as pdf

Related Stories

Researchers find key to messenger RNA control

Jul 26, 2007

Researchers at McGill University have successfully used a class of tiny nucleic acids called microRNAs to control messenger RNA, one of the major gene regulators in life, outside the confines of a living cell for the first ...

Lipid involved with gene regulation uncovered

Sep 08, 2009

(PhysOrg.com) -- Virginia Commonwealth University School of Medicine researchers have discovered a new role for the bioactive lipid messenger, sphingosine-1-phosphate, or S1P, that is abundant in our blood - a finding that ...

Lipid involved with gene regulation uncovered

Sep 04, 2009

Virginia Commonwealth University School of Medicine researchers have discovered a new role for the bioactive lipid messenger, sphingosine-1-phosphate, or S1P, that is abundant in our blood - a finding that could lead to a ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

User comments : 0