Landmark study sheds new light on human chromosomal birth defects

Sep 16, 2009
Looking at the yeast genome: this is the genetic material of this organism. Credit: Hong-Guo Yu/FSU Dept. of Biological Science

Using yeast genetics and a novel scheme to selectively remove a single protein from the cell division process called meiosis, a cell biologist at The Florida State University found that when a key molecular player known as Pds5 goes missing, chromosomes fail to segregate and pair up properly, and birth defects such as Down syndrome can result.

That discovery is groundbreaking, but so, too, is what principal investigator Hong-Guo Yu calls the "genetics trick" performed by his research team that made the discovery possible. The study shines new light on the protein Pds5, its crucial regulatory role during meiosis, and the impact of its absence on the molecular-level genesis of human chromosomal birth defects that include Down, Edwards, Patau, Turner, Klinefelter's and XYY syndromes.

The findings, which are described in a paper featured in the Journal of Cell Biology, may contribute to the eventual development of targeted, molecular-level interventions.

Yu, an assistant professor in FSU's Department of Biological Science, explained how the meiotic stage is set and what goes wrong when key elements are rearranged.

"To produce a genetically balanced gamete (sperm and egg), the cell must contend with two sets of chromosome pairs, homologs and sisters," he said. "Homologs are the nearly identical chromosomes inherited from each parent; sisters are exactly identical pairs that are produced like photocopies as part of normal cell division.

"During normal meiosis, the process of division that halves the number of chromosomes per cell, my colleagues and I discovered that Pds5 regulates the pairing and synapsis (joining together) of 'mom and dad' homologs. We also learned that Pds5 plays a vital role in the synaptonemal complex, a glue-like that homologs use to literally stick together as they pair up. In addition, we found that, although sister chromatids enter meiosis in very close proximity to one another, Pds5 acts to inhibit synapsis between them, a good thing because, then, meiotic conditions support the necessary pairing of homologs."

Consequently, removing Pds5 during meiosis triggers a chromosomal catastrophe.

"In order to observe what happened when the Pds5 went missing from the process, we performed a 'molecular genetics trick' that had never been applied to this particular protein before, and it worked," Yu said. "We successfully engineered cells that shut down Pds5 only during meiosis, but not when they were vegetative."

As a result, Pds5 was no longer present to regulate homolog organization and transmission in the meiotic yeast cells. The synaptonemal complex, which normally would support the synapsis of homologs by creating a sticky bond along their entire length, failed to form. In the meiotic malfunction that followed, the identical sister chromosomes began to synapse instead.

"When Pds5 is removed and sister chromatids become synapsed as a result, the segregation and recombination of homologs essential for diversity fails," Yu said. "This finding is highly important, because failure to generate a crossover between homologs leads to chromosome missegregation and can cause human chromosomal birth defects such as Down syndrome, which affects about one in 800 newborns in the United States."

Yu said the landmark study has significantly extended previous observations of the role of Pds5 in the formation of meiotic chromosome structure.

"Now, we are investigating the other factors that interact with Pds5 during meiosis to regulate chromosome segregation and homolog synapsis," he said. "Long term, we hope to achieve a comprehensive understanding of the molecular mechanisms behind chromosomal birth defects and see our research contribute to the creation of targeted interventions during meiosis."

More information: The Sept. 7, 2009, (http://jcb.rupress.org/cgi/content/full/186/5/713) paper ("Pds5 is required for homologue pairing and inhibits synapsis of sister chromatids during yeast meiosis") was co-authored by Hui Jin, a research technician in biology at Florida State, and Vincent Guacci, a postdoctoral assistant in the Department of Embryology at the Carnegie Institution of Washington.

Source: Florida State University (news : web)

Explore further: Research sheds light on what causes cells to divide

add to favorites email to friend print save as pdf

Related Stories

Protein role in meiosis re-evaluated by researchers

Apr 17, 2008

Proteins that control cell division play a far more nuanced role than researchers previously thought in the process that gives rise to reproductive cells, according to new findings by MIT biologists.

Is this the beginning of the end of plant breeding?

Jun 09, 2009

No human is a clone of their parents but the same cannot be said for other living things. While your DNA is a combination of half your mother and half your father, other species do things differently. The advantage of clonal ...

Hotspots found for chromosome gene swapping

Nov 29, 2007

Crossovers and double-strand DNA breaks do not occur randomly on yeast chromosomes during meiosis, but are greatly influenced by the proximity of the chromosome’s telomere, according to research in the laboratory of Whitehead ...

New Clues to How Sex Evolves

Dec 04, 2006

Sex is a boon to evolution; it allows genetic material from parents to recombine, giving rise to a unique new genome. But how did sex itself evolve? Researchers at the Department of Energy's Lawrence Berkeley ...

Recommended for you

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.