New nanostructure technology provides advances in eyeglass, solar energy performance

Sep 16, 2009
Chemical engineers at Oregon State University are using extraordinarily small films at the nanostructure level to improve the performance of eyeglasses and, ultimately, solar energy devices. These films, which resemble millions of tiny pyramids, reduce the reflectance of any light that strikes the material. (Image by Seung-Yeol Han)

(PhysOrg.com) -- Chemical engineers at Oregon State University have invented a new technology to deposit "nanostructure films" on various surfaces, which may first find use as coatings for eyeglasses that cost less and work better.

Ultimately, the technique may provide a way to make more efficiently produce energy.

The films reduce the reflectance of light, and in the case of would capture more light, reduce glare and also reduce exposure to . Some coatings with these features are already available, but the new technology should perform better at a lower cost, and be able to be applied on-site in a dispenser's office.

"There's really a whole range of things this technology may ultimately be useful for," said Chih-hung Chang, an associate professor in the OSU Department of Chemical, Biological and Environmental Engineering. "They should be able to make almost any type of system work more efficiently, and ultimately could be used in cameras or other types of lenses."

A patent has been applied for on the new technology, and the first commercial products may be ready within a year, Chang said.

The key to the process is use of a chemical bath, controlled by a microreactor, to place thin-film deposits on various substrates such as glass, plastic, or . In this case, the technology will create a type of nanostructure that resembles millions of tiny pyramids in a small space, which function to reduce the reflectance of any light that strikes the material.

The scientists are now working on the application of this thin film to polycarbonate, the type of plastic most commonly used in eyeglass production, and also plan to create a small unit that can apply the films inexpensively in an office setting.

The final product should be faster to apply, less costly, reduce waste of materials and perform better than existing technologies, the researchers said.

Provided by Oregon State University (news : web)

Explore further: Carbon nanoballs can greatly contribute to sustainable energy supply

add to favorites email to friend print save as pdf

Related Stories

Nanotechnologies could slash cost of solar energy

Feb 03, 2005

Nanotechnologies which can artificially change the optical properties of materials to allow light to be trapped in solar cells could greatly reduce the cost of solar energy. Research being carried out by the School of Electronics ...

Ancient diatoms lead to new technology for solar energy

Apr 08, 2009

Engineers at Oregon State University have discovered a way to use an ancient life form to create one of the newest technologies for solar energy, in systems that may be surprisingly simple to build compared to existing silicon-based ...

Perfecting a solar cell by adding imperfections

Jun 16, 2008

Nanotechnology is paving the way toward improved solar cells. New research shows that a film of carbon nanotubes may be able to replace two of the layers normally used in a solar cell, with improved performance at a lower ...

Researchers Develop a Better Coating Solution

Jun 24, 2004

Innovative researchers at The University of Queensland have come up with a way to stop your bathroom mirrors, spectacles and swim goggles from ever fogging up again. UQ physicists Dr Paul Meredith and Dr Mi ...

Recommended for you

Researchers use oxides to flip graphene conductivity

19 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Sep 16, 2009
Why not develop holographic lenses ?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.