Blood Brothers: Particles Form Strong Bonds in Blood Vessels (w/ Video)

Sep 16, 2009

(PhysOrg.com) -- Functionalized nano- and microscale particle systems have become a key component in biomedical applications, from drug delivery to prosthetics. Their small size and potential for modification and functionalization make them ideal for performing specific tasks within the human body.

But can these materials be controlled at the structural level, to create capable of complex interactions with biological systems? Professor Joerg Lahann and his team at the University of Michigan believe that they can. They have developed a microscale fluid manipulation system—which they call electrohydrodynamic co-jetting—based on electrospinning, a process in which thin fibrous strands are drawn from a liquid using a high voltage.

This video is not supported by your browser at this time.

In their latest work, reported in the materials science journal Advanced Materials, Professor Lahann and co-workers utilize this system to synthesize dual-compartment, biologically compatible polymer particles with the ability to selectively self-associate with human endothelial cells, found in the lining of . When the particles were incubated with these cells, they displayed a strongly specific binding pattern—one hemisphere exhibited strong affinity to the cell surface, while the other had almost none. The explanation? One of the compartments had been modified with the protein streptavidin, which interacts strongly within biological systems. This selective functionalization resulted in spatial control at the cellular level; as only one side of each particle was attracted to the cells, they formed into layers, just one particle thick, on the cell surface.

With the fundamental concept demonstrated, the Lahann group identifies future work in more sophisticated multi-compartmented building blocks, suitable for use in more complex bio-hybrid designs. More fine control over the particle architecture, which will allow for the creation of different particle morphologies and functionalities, will be key to the design of novel, complex systems for use in areas such as regenerative medicine, medical imaging and diagnostics, and microscale energy production and storage.

More information: M. Yoshida et al., Adv. Mater. 2009, DOI: 10.1002/adma.200901971

Provided by Wiley (news : web)

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

Two Robot Chefs Make Omelets

Dec 04, 2008

(PhysOrg.com) -- No "house of the future" is complete without a household robot to do the cooking and cleaning. Although today´s robots still have a ways to go before substituting for a real live-in maid, ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.