Blood Brothers: Particles Form Strong Bonds in Blood Vessels (w/ Video)

Sep 16, 2009

(PhysOrg.com) -- Functionalized nano- and microscale particle systems have become a key component in biomedical applications, from drug delivery to prosthetics. Their small size and potential for modification and functionalization make them ideal for performing specific tasks within the human body.

But can these materials be controlled at the structural level, to create capable of complex interactions with biological systems? Professor Joerg Lahann and his team at the University of Michigan believe that they can. They have developed a microscale fluid manipulation system—which they call electrohydrodynamic co-jetting—based on electrospinning, a process in which thin fibrous strands are drawn from a liquid using a high voltage.

This video is not supported by your browser at this time.

In their latest work, reported in the materials science journal Advanced Materials, Professor Lahann and co-workers utilize this system to synthesize dual-compartment, biologically compatible polymer particles with the ability to selectively self-associate with human endothelial cells, found in the lining of . When the particles were incubated with these cells, they displayed a strongly specific binding pattern—one hemisphere exhibited strong affinity to the cell surface, while the other had almost none. The explanation? One of the compartments had been modified with the protein streptavidin, which interacts strongly within biological systems. This selective functionalization resulted in spatial control at the cellular level; as only one side of each particle was attracted to the cells, they formed into layers, just one particle thick, on the cell surface.

With the fundamental concept demonstrated, the Lahann group identifies future work in more sophisticated multi-compartmented building blocks, suitable for use in more complex bio-hybrid designs. More fine control over the particle architecture, which will allow for the creation of different particle morphologies and functionalities, will be key to the design of novel, complex systems for use in areas such as regenerative medicine, medical imaging and diagnostics, and microscale energy production and storage.

More information: M. Yoshida et al., Adv. Mater. 2009, DOI: 10.1002/adma.200901971

Provided by Wiley (news : web)

Explore further: New paint-like coating makes tough surfaces that repel spills, scratches (w/ Video)

add to favorites email to friend print save as pdf

Related Stories

Two Robot Chefs Make Omelets

Dec 04, 2008

(PhysOrg.com) -- No "house of the future" is complete without a household robot to do the cooking and cleaning. Although today´s robots still have a ways to go before substituting for a real live-in maid, ...

Recommended for you

Buckybomb shows potential power of nanoscale explosives

15 hours ago

(Phys.org)—Scientists have simulated the explosion of a modified buckminsterfullerene molecule (C60), better known as a buckyball, and shown that the reaction produces a tremendous increase in temperatur ...

Glass coating improves battery performance

Mar 02, 2015

Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.