New X-ray technique illuminates reactivity of environmental contaminants

Sep 15, 2009
Pictured are Matthew Ginder-Vogel, left, and Donald Sparks, S. Hallock du Pont Chair of Plant and Soil Sciences and director of the Delaware Environmental Institute at the University of Delaware. Credit: Kathy F. Atkinson/University of Delaware

Thanks to a new analytical method employed by researchers at the University of Delaware, scientists can now pinpoint, at the millisecond level, what happens as harmful environmental contaminants such as arsenic begin to react with soil and water under various conditions.

Quantifying the initial rates of such reactions is essential for modeling how contaminants are transported in the environment and predicting risks.

The research method, which uses an analytical technique known as quick-scanning X-ray absorption spectroscopy (Q-XAS), was developed by a research team led by Donald Sparks, S. Hallock du Pont Chair of Plant and Soil Sciences and director of the Delaware Environmental Institute at UD. The work is reported in the Sept. 10 Early Edition of the and will be in the Sept. 22 print issue.

Postdoctoral researcher Matthew Ginder-Vogel is the first author of the study, which also involved Ph.D. student Gautier Landrot and Jason Fischel, an undergraduate student at Juniata College who has interned in Sparks's lab during the past three summers.

The research method was developed using beamline X18B at the at Brookhaven National Laboratory in Upton, N.Y. The facility is operated by the U.S. Department of Energy.

"This method is a significant advance in elucidating mechanisms of important geochemical processes, and is the first application, at millisecond time scales, to determine in real-time, the molecular scale reactions at the mineral/water interface. It has tremendous applications to many important environmental processes including sorption, redox, and precipitation," Sparks said.

"My group and I have been conducting kinetics studies on soils and soil minerals for 30 years," Sparks added. "Since the beginning I have been hopeful that someday we could follow extremely rapid reaction processes and simultaneously collect mechanistic information."

X-ray spectroscopy was invented years ago to illuminate structures and materials at the atomic level. The technique has been commonly used by physicists, chemists, materials scientists, and engineers, but only recently by environmental scientists.

"In studying kinetics, we want to know how fast a contaminant begins to stick to a mineral," Ginder-Vogel says. "In general, these reactions are very rapid -- 90 percent of the reaction is over in the first 10 seconds. Now we can measure the first few seconds of these reactions that couldn't be measured before. We can now look at things as they happen versus attempting to freeze time after the fact," he notes.

For their study, the UD researchers made millisecond measurements of the oxidation rate of arsenic by hydrous manganese oxide, which is a mineral that absorbs heavy metals and nutrients.

Contamination of drinking supplies by arsenic is a serious health concern in the United States and abroad. The poisonous element occurs naturally in rocks and minerals and is also used in a wide range of products, from wood preservatives and insecticides, to poultry feed.

The toxicity and availability of arsenic to living organisms depends on its oxidation state -- in other words, the number of electrons lost or gained by an atom when it reacts with minerals and microbes. For example, arsenite [As(III)] is more mobile and toxic than its oxidized counterpart, arsenate [As(V)].

"Our technique is important for looking at groundwater flowing through minerals," Ginder-Vogel notes. "We look at it as a very early tool that can be incorporated into predictive modeling for the environment."

Source: University of Delaware (news : web)

Explore further: Potent, puzzling and (now less) toxic: Team discovers how antifungal drug works

add to favorites email to friend print save as pdf

Related Stories

Scientists Describe New Way to Peer Inside Bacteria

Aug 29, 2005

X-rays yield pictures and chemical clues that may help trace contaminants, thwart terrorists As part of the search for better ways to track and clean up soil contaminants, scientists at the U.S. Departmen ...

Water-stingy agriculture reduces arsenic in rice markedly

Jul 28, 2008

A new farming method first developed to conserve precious irrigation water may have the added benefit of producing rice containing much less arsenic than rice grown using traditional rice-farming methods, researchers in the ...

Arsenic and new rice

Jun 10, 2008

Amid recent reports of dangerous levels of arsenic being found in some baby rice products, scientists have found a protein in plants that could help to reduce the toxic content of crops grown in environments with high levels ...

Recommended for you

Researchers show fruit flies have latent bioluminescence

Apr 10, 2014

New research from Stephen C. Miller, PhD, associate professor of biochemistry and molecular pharmacology, shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark—otherwise ...

User comments : 0

More news stories

Chemists achieve molecular first

(Phys.org) —Chemists from Trinity College Dublin have achieved a long-pursued molecular first by interlocking three molecules through a single point. Developing interlocked molecules is one of the greatest ...

Metals go from strength to strength

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...