Dividing cells 'feel' their way out of warp

Sep 10, 2009
Douglas N. Robinson, Ph.D., is an associate professor of Cell Biology, Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine. Credit: Johns Hopkins Medicine

Every moment, millions of a body's cells flawlessly divvy up their genes and pinch perfectly in half to form two identical progeny for the replenishment of tissues and organs -- even as they collide, get stuck, and squeeze through infinitesimally small spaces that distort their shapes.

Now Johns Hopkins scientists, working with the simplest of organisms, have discovered the molecular sensor that lets cells not only "feel" changes to their neat shapes, but also to remodel themselves back into ready-to-split symmetry. In a study published September 15 in , the researchers show that two force-sensitive proteins accumulate at the sites of cell-shape disturbances and cooperate first to sense the changes and then to resculpt the cells. The proteins — II and cortexillin I — monitor and correct shape changes in order to ensure smooth division.

This video is not supported by your browser at this time.
Watch dividing cells "feel" their way out of warp. Credit: Johns Hopkins Medicine

"What we found is an exquisitely tuned mechanosensory system that keeps the cells shipshape so they can divide properly," says Douglas N. Robinson, Ph.D., an associate professor of , Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine.

Faulty cell division can put organisms, including people, on the pathway to diseases such as cancer, Robinson notes, and a better understanding of how cells respond to mechanical stress on their shapes could present new targets for both diagnosing and treating such diseases.

Working with hardy, single-celled protozoa that move and divide similarly to human cells, the scientists watched through microscopes while they deformed the cells' shapes with a tiny instrument that, like a soda straw, sucks in on the cell surface and creates distorted shapes.

"This particular method, based on a very old principle that dates back to Archimedes, enables us to deform cells without killing them, much in the same way that natural processes in the body constantly assault them, Robinson says."

Once the cells were warped, the scientists monitored the movements of fluorescent-tagged myosin II and cortexillin I. Myosin, which normally accumulates in the middles of cells during division to help power that process, collected instead at the sites of disturbances made by the micropipette. Also amassing with myosin was cortexillin I, a so-called actin-crosslinking protein that, like glue, holds the toothpick-like filaments of a cell's housing together.

In the experiments, as soon as the two proteins accumulated to a certain level, the cells contracted, escaping the pipettes and assuming their original shapes. After the cells righted themselves, the proteins realigned along the cells' midlines and pinched to divide symmetrically into two daughter cells.

The researchers repeated the experiment using cells engineered to lack myosin II and then again with cells lacking cortexillin I. They discovered that cortexillin I responded to deformations except when myosin II was removed, and myosin II responded to deformations except when cortexillin I was removed.

"It's clear that the two need each other to operate as a cellular mechanosensor," Robinson says.

Source: Johns Hopkins Medical Institutions

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

add to favorites email to friend print save as pdf

Related Stories

Molecular motor works by detecting minute changes in force

Jul 09, 2008

Researchers at the University of Pennsylvania School of Medicine discovered that the activity of a specific family of nanometer-sized molecular motors called myosin-I is regulated by force. The motor puts tension on cellular ...

How molecular muscles help cells divide

Dec 14, 2007

Time-lapse videos and computer simulations provide the first concrete molecular explanation of how a cell flexes tiny muscle-like structures to pinch itself into two daughter cells at the end of each cell division, according ...

Molecular motors may speed nutrient processing

May 30, 2007

Matthew Tyska, Ph.D., recalls being intrigued, from the first day of his postdoctoral fellowship in 1999, with a nearly 30-year-old photograph. It was an electron micrograph that showed the internal structures of an intestinal ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

10 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

12 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...