Bacteria pack their own demise

Jul 30, 2009

Numerous pathogens contain an 'internal time bomb', a deadly mechanism that can be used against them. After years of work, VIB researchers at the Vrije Universiteit Brussel (VUB) were able to determine the structure and operating mechanism of the proteins involved. This clears the road for finding ways to set the clock on this internal time bomb and, hopefully, in the process developing a new class of antibiotics. The research was accepted for publication by top journal Molecular Cell, with congratulations from the editorial board.

It's in the genes

For years, Nathalie De Jonge, Remy Loris and their colleagues of the VIB Department of Molecular and Cellular Interactions at VUB, have applied their relentless dedication to the study of the precise structure and function of the toxin-antitoxin complex, a system that had not been the focus of much interest in the past. Only in the last couple of years the rest of the scientific world come to realize its importance and as a result the number of papers in this field has exploded.

All living creatures, people as well as bacteria, store their in the same way, i.e. in the . Every human cell contains 46 neatly folded that together measure two meters, while bacteria have to make do with around one millimetre of DNA. A piece of DNA containing the recipe for one characteristic, such as "how to make citric acid" or "how to make hair curl," is called a gene. Humans have several tens of thousands of genes.

Toxin and antitoxin

If your genetic information becomes damaged, you have a good chance of becoming ill or even dying. This is also true for bacteria, which over time developed a handy way of providing extra protection to important genes - the toxin-antitoxin (T-A) system. These T-A genes are tucked in near the genes to be protected. T-A genes contain instructions for both a toxin and its antitoxin. As long as the cell is producing both, all is well. However, if for some reason the piece of DNA where the T-A gene is located gets damaged or lost, the production of toxin and antitoxin comes to a halt and a time bomb starts ticking. Because the toxin is more stable than the antitoxin, it is broken down more slowly by the cell's clean-up mechanisms. Once the antitoxin is all gone, there is still enough toxin left to kill the bacterium. The upshot for the species is that bacteria that loses their T-A gene - and probably have sustained damage to the important genes just next to it - can no longer reproduce.

Our best-known intestinal residents, Escherichia coli bacteria, more commonly known as E.coli, have such a T-A system in five different locations in their DNA, while Mycobacterium tuberculosis even have them in 60 locations.

A difficult feat

The T-A mechanism has been known for a while, but nobody clearly understood the workings of the proteins carrying out the instructions of the T-A gene. The VIB researchers clarified in detail both the appearance of the toxin and antitoxin, the mechanism of their interaction and the forms they take while in action - a difficult feat to pull off, requiring the simultaneous use of a whole range of different technologies. One of the difficulties for instance lay in the fact that part of the antitoxin lacks a fixed structure. This formlessness keeps it from being brought into view.

Future

Now that we finally know how the time bomb functions (or more exactly, one of the time bombs, as there are several closely related T-A systems), biomedical scientists can start looking for substances to start the time bomb of pathogens ticking, i.e. substances that imitate the toxin protein, block the antitoxin protein, or disrupt the interaction between the toxin and antitoxin. In time, a new class of might come out of it - though Nature mostly has a countermove up its sleeve against any move scientists do.

Source: VIB (the Flanders Institute for Biotechnology)

Explore further: Scientists find key to te first cell differentiation in mammals

add to favorites email to friend print save as pdf

Related Stories

Humans not the major target of Shiga toxin

Dec 03, 2007

If you’ve survived Shiga toxin and the after-effects of food poisoning, you may have been the innocent victim of a battle for survival between predator and prey.

Viruses can turn harmless E. coli dangerous

Apr 16, 2009

For her doctorate, Camilla Sekse studied how viral DNA can be transmitted from pathogenic to non-pathogenic E. coli. Viruses that infect bacteria in this way are called bacteriophages. Her findings reveal ...

Understanding why C. difficile causes disease -- it's Hungry

May 24, 2007

Researchers studying the genetics behind why C. difficile causes disease have come to a simple conclusion -- the bacteria do it because they are starving. That just might help them find a new treatment for what can sometimes ...

Evolution mystery: Spider venom and bacteria share same toxin

Feb 01, 2006

It's a case of evolutionary detective work. Biology researchers at Lewis & Clark College and the University of Arizona have found evidence for an ancient transfer of a toxin between ancestors of two very dissimilar organisms--spiders ...

Recommended for you

Research helps identify memory molecules

5 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

6 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

6 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0