Naval Research Laboratory's ANDE-2 launched aboard Space Shuttle Endeavour

Jul 17, 2009
ANDE-2 consists of two spherical microsatellites, Pollux and Castor, that are both 19" in diameter but have different masses. ANDE-2 is a low-cost mission designed to study the atmosphere of the Earth from low-Earth orbit by monitoring total atmospheric density between 300 and 400 km altitude. Credit: NRL photo

The Naval Research Laboratory's (NRL's) satellite suite, the Atmospheric Neutral Density Experiment 2 (ANDE-2), launched aboard NASA's Space Shuttle Endeavour on July 15, 2009. The ANDE-2 satellite suite consists of two nearly perfectly spherical micro-satellites with instrumentation to perform two interrelated mission objectives. The first objective is to monitor the total atmospheric density along the orbit for improved orbit determination of resident space objects. The second is to provide a test object for both radar and optical U.S. Space Surveillance Network sensors.

ANDE-2 is a low-cost mission designed to study the atmosphere of the Earth from low-Earth orbit by monitoring total atmospheric density between 300 and 400 km altitude. ANDE-2 data will be used to improve methods for the precision orbit determination of space objects and to calibrate the Space Fence, a radar space surveillance system belonging to the Air Force 20th Space Control Squadron, a principal resource for tracking low-Earth orbiting space satellites.

Because of ANDE-2's particular design requirements, a new deployment technique was developed by the Air Force Space Test Program and tested with the ANDE Risk Reduction (ANDERR) flight in December 2006. The primary ANDERR mission objective, a test of the Shuttle deployment mechanism, was successful.

The ANDE project was conceived and developed at NRL, by Andrew Nicholas of NRL's Space Science Division. The mission consists of two microsatellites with the same size but different masses sent into orbit at the same time: the lighter known as Pollux, and the heavier satellite, Castor. The Castor spacecraft carries active instruments: a miniature wind and temperature spectrometer (NRL/NASA GSFC) to measure atmospheric composition, cross-track winds, and neutral temperature; a Global Positioning Sensor (AFRL/University of Texas at Austin); a thermal monitoring system to monitor the temperature of the satellite (NRL); an electrostatic analyzer to monitor plasma density spacecraft charging (U.S. Air Force Academy).

Each satellite contains a small lightweight payload designed to determine the spin rate and orientation of the satellite from on-orbit measurements and from ground-based observations. The two microsatellites will slowly separate into lead-trail orbit to provide researchers an opportunity to study small-scale, spatial and temporal variations in drag associated with geomagnetic activity. Both the satellites will be fitted with and array of thirty retro reflectors, and will be observed by the U.S. Space Surveillance Network and domestic and international satellite laser ranging sites. The variation in observed position will be used to determine in-track total density. Scientists will determine its position in relation to the passive satellite to compute total density and validate drag coefficient models. In addition, instrumentation on board Castor will measure density and composition.

A joint effort between the Space Science Division and the Naval Center for Space Technology to routinely process and analyze the ANDERR data has led to improved orbit determination and prediction using an atmospheric model correction method. The ANDE data provide a valuable tool for correcting deficiencies in atmospheric models and have led to advancements in miniature sensor technology. These advancements are pivotal for multi-point in-situ space weather sensing. The DoD Test Program will provide launch services for the ANDE-2 mission.

Source: Naval Research Laboratory (news : web)

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

Sophisticated weather satellite rockets into orbit

Jun 28, 2009

(PhysOrg.com) -- The latest Geostationary Operational Environmental Satellite, GOES-O, soared into space today after a successful launch from Space Launch Complex 37 at the Cape Canaveral Air Force Station ...

HICO-RAIDS experiments ready for payload integration

Sep 26, 2008

The Hyperspectral Imager for the Coastal Ocean (HICO) and the Remote Atmospheric and Ionospheric Detection System (RAIDS), both developed at the Naval Research Laboratory (NRL), are ready for payload integration following ...

Vanguard I celebrates 50 years in space

Mar 13, 2008

The Vanguard I satellite celebrates its 50th birthday this year. Its launch on March 17, 1958 from Cape Canaveral, Florida, culminated the efforts of America’s first official space satellite program begun in September 1955. ...

Updated version of GAIM model goes operational

May 02, 2008

An updated version of the Global Assimilation of Ionospheric Measurements (GAIM) model went operational at the Air Force Weather Agency (AFWA) on February 22, 2008. The operational GAIM program has been under development ...

Space Image: A Beehive of Satellites

Feb 12, 2009

The launch of the first artificial satellite by the then Soviet Union in 1957 marked the beginning of the utilization of space for science and commercial activity. During the Cold War, space was a prime area ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.