Researchers Suggest New Approach in Development Efforts for Parkinson’s Therapeutics

Jul 14, 2009
A tiny worm and cyclic peptides are central in efforts to create a new approach in drug development.

(PhysOrg.com) -- Researchers outline today a new approach in the potential development of drugs to counter a cellular defect that triggers Parkinson’s and other diseases.

A research article, publishing in this week’s , describes new avenues that protect, within model organisms, against the harmful clumping of proteins implicated in Parkinson’s and other , such as Alzheimer’s and Huntington’s. Three University of Alabama scientists are among the article’s co-authors.

“It expands the toolbox that exists for drug discovery,” said Dr. Guy Caldwell, associate professor of biological sciences at UA, of the research.

The researchers identified distinct cyclic peptides - amino acids linked in a ringlet - that protect against the problems resulting from the presence of extra copies of a protein, alpha synuclein.

Proteins must fold properly within cells. When extra copies of are present, a series of misfoldings can occur, leading to aggregation, or clumping, of proteins. Such protein aggregation within the brain’s dopamine-producing neurons can lead to their malfunction or cell death, triggering the symptoms of Parkinson’s.

Shusei Hamamichi, a doctoral student, was UA’s lead researcher on the paper and was joined at UA by Caldwell and Dr. Kim Caldwell, assistant professor of biological sciences, in the research. The multi-institution effort, led by Dr. Susan Lindquist, of the Whitehead Institute and M.I.T., involved researchers representing five different universities and research institutes.

Cyclic peptides, which are naturally occurring in lower organisms, such as bacteria, have not been found in humans, Hamamichi said. They have routinely been made in test tubes, and some antibiotics are developed from them.

“What’s different here,” Caldwell said, “is the peptide is being made in vivo - inside an animal or inside a cell. There is an enzymatic reaction that occurs in the cell that cyclizes it in a living organism.”

The researchers used both yeast cells and tiny nematodes, known as C. elegans, as model organisms in their research.

“The key is the cyclic peptide is actually coded for genetically. It’s coded for by the DNA that we introduce into the yeast cell or worm neurons.”

Through analysis of some 5 million possibilities, the researchers identified specific cyclic peptides that, when modified with enzymes, provided the desired protective capabilities.

Using the cyclic peptides in this manner, as well as the strategy followed in screening them, represent novel approaches, Caldwell said.

A next step, Caldwell said, would be to test the possibilities within a mammal, such as a rodent. The long-range goal would be to develop a drug from the cyclic peptide that would offer its protection.

“This offers a new family of therapeutic agents that have not previously been applied to neurodegenerative diseases, specifically Parkinson’s,” he said.

Hamamichi, who in April won the UA graduate school’s Excellence in Research by a Doctoral Student award, is scheduled to earn his doctorate from UA in December and has accepted a post-doctoral position in Lindquist’s Whitehead lab for 2010.

Provided by University of Alabama

Explore further: Why plants don't get sunburn

add to favorites email to friend print save as pdf

Related Stories

Study identifies novel Parkinson's disease drug target

Jun 21, 2007

Researchers at the MassGeneral Institute for Neurodegenerative Disease (MGH-MIND) have identified a potential new drug target for the treatment of Parkinson’s disease and possibly for other degenerative neurological disorders.

Recommended for you

Why plants don't get sunburn

Oct 29, 2014

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.