A New Way of Treating the Flu

Jul 06, 2009
Linhardt’s new compound (green spheres) blocks both the N (pink spikes) and H (blue spikes) portion of the flu virus. The compound prevents the infection of the cell and the spread of the flu to other cells like. Image Credit: Rensselaer/Melissa Kemp

(PhysOrg.com) -- What happens if the next big influenza mutation proves resistant to the available anti-viral drugs? This question was presenting itself to scientists and health officials recently at the World Health Assembly in Geneva, Switzerland, as they continued to do battle with H1N1, the so-called swine flu, and prepared for the next iteration of the ever-changing flu virus.

Promising new research announced by Rensselaer Polytechnic Institute could provide an entirely new tool to combat the . The discovery is a one-two punch that targets the illness on two fronts, going one critical step further than any currently available flu drug.

“We have been fortunate with H1N1 because it has been responding well to available drugs. But if the virus mutates substantially, the currently available drugs might be ineffective because they only target one portion of the virus,” said Robert Linhardt, the Ann and John H. Broadbent Jr. ’59 Senior Constellation Professor of and Metabolic Engineering. “By targeting both portions of the virus, the H and the N, we can interfere with both the initial attachment to the cell that is being infected and the release of the budding virus from the cell that has been affected.”

The findings of the team, which have broad implications for future flu drugs, are featured on the cover of the June edition of European Journal of Organic Chemistry.

The is classified based on the form of two of its outer proteins, hemagglutinin (H) and neuraminidase (N). Each classification — for example H5NI “” or H1N1 “” — represents a different mutation of hemagglutinin and neuraminidase or H and N.

Flu drugs currently on the market target only the neuraminidase proteins, and disrupt the ability of the virus to escape an infected cell and move elsewhere to infect other healthy . The new process developed by Linhardt is already showing strong binding potential to hemagglutinin, which binds to sialic acid on the surface of a healthy cell, allowing the virus to enter the cell.

“We are seeing promising preliminary results that the chemistry of this approach will be effective in blocking the hemagglutinin portion of the disease that is currently not targeted by any drug on the market,” he said.

In addition, Linhardt and his team have shown their compound to be just as effective at targeting neuraminidase as the most popular drugs on the market, according to Linhardt.

The approach can also be modified to specifically target the neuraminidase or the hemagglutinin, or both, depending on the type of mutation that is present in the current version of the flu, according to Linhardt.

In the next steps of his research, Linhardt will look at how their compounds bind to hemagglutinin, and he will test the ability to block the virus first in cell cultures and then in infected animal models.

“It is still early in the process,” he said. “We are several steps away from a new drug, but this technique is allowing us to move very quickly in creating and testing these compounds.”

The technique that Linhardt used is the increasingly popular technique of “click chemistry.” Linhardt is among the first researchers in the world to utilize the technique to create new anti-viral agents. The process allows chemists to join small units of a substance together quickly to create a new, full substance.

In this case, Linhardt used the technique to quickly build a new derivative of sialic acid. Because it is chemically very similar to the sialic acid found on the surface of a cell, the could mistake the compound as the real sialic acid and bind to it instead of the cell, eliminating the connections to hemagglutinin and neuraminidase that are required for initial infection and spread of the infection in the body. The currently available drugs are translation-state inhibitors whose chemical structure allows them to only effectively target the neuraminidase.

Provided by Rensselaer Polytechnic Institute (news : web)

Explore further: Breakthrough points to new drugs from nature

add to favorites email to friend print save as pdf

Related Stories

A New Way of Treating the Flu

Jun 13, 2009

What happens if the next big influenza mutation proves resistant to the available anti-viral drugs? This question is presenting itself right now to scientists and health officials this week at the World Health ...

Flu shot might also offer some protection against H5N1

Feb 13, 2007

The yearly influenza vaccine that health officials urge people to get each fall might also offer certain individuals some cross protection against the H5N1 virus, commonly known as bird flu, according to investigators at ...

Recommended for you

Breakthrough points to new drugs from nature

9 hours ago

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

9 hours ago

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

ZeroDelta
not rated yet Jul 06, 2009
This was disclosed in May. Take it from a local!
RPI - 2 H1N1 - 0
E_L_Earnhardt
1 / 5 (1) Jul 07, 2009
I had rather you kill it in the pig, bird, wherever! Dose anyone know the ongoing source?
denijane
not rated yet Jul 10, 2009
I don't get it, why do we need to treat the flu if it's non-lethal? And what's even worst, why do we have to make it sound like it's important to have those antiviral drugs for influenza viruses that are no more dangerous than regular flu.

More news stories

Breakthrough points to new drugs from nature

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.