Computer-Guided Nanoparticle Therapy Destroys Tumors

Jun 29, 2009

Gold nanoshells are among the most promising new nanoscale therapeutics being developed to kill tumors, acting as antennas that turn light energy into heat that cooks cancer to death. Now, a multi-institutional research team has shown that polymer-coated gold nanorods one-up their spherical counterparts, with a single dose completely destroying all tumors in a nonhuman animal model of human cancer.

Reporting its work in the journal Cancer Research, a research team headed by Sangeeta N. Bhatia, M.D., Ph.D., Massachusetts Institute of Technology, and Michael J. Sailor, Ph.D., University of California, San Diego, described its development of gold nanorods, coated with polyethylene glycol, which set a new record for the time they remain circulating in the bloodstream. This long-circulation half-life of approximately 17 hours affords the nanorods the opportunity to accumulate in tumors, thanks to the leaky blood vessels that surround malignancies. Both Dr. Bhatia and Dr. Sailor are members of the National Cancer Institute’s Alliance for Nanotechnology in Cancer.

Gold nanoparticles can absorb different frequencies of light, depending on their shape. The rod-shaped particles developed for this study absorb near-infrared light, which heats the nanorods but passes harmlessly through human tissue. In the current work, tumors in mice that received an intravenous injection of nanorods plus near-infrared laser treatment disappeared within 15 days. Those mice survived for 3 months, with no evidence of recurrence, until the end of the study, whereas mice that received no treatment or only the nanorods or laser died within weeks.

During a single exposure to a near-infrared laser, the nanorods heat up to 70° C, hot enough to kill tumor cells. Additionally, heating them to a lower temperature weakens tumor cells enough to enhance the effectiveness of existing treatments, raising the possibility of using the nanorods as a supplement to those treatments. The nanorods also could be used to kill left behind after surgery. The investigators note that the nanorods can be more than 1,000 times more precise than a surgeon’s scalpel, so potentially they could remove residual cells the surgeon cannot get at.

Another useful characteristic of the gold nanorods is that they are very efficient at absorbing x-rays, providing a sensitivity boost to x-ray imaging methods such as computerized tomography scanning. The investigators took advantage of this property, using x-rays to create a detailed three-dimensional map of where the nanorods accumulated in the tumor-bearing animals. They then used this map to calculate the optimal irradiation protocol to maximize the tumor-killing effect and minimize damage to healthy tissue.

The nanorods’ homing abilities also make them a promising tool for diagnosing tumors. After the particles are injected, they can be imaged using a technique known as Raman scattering. Any tissue that lights up, other than liver or spleen tissue, could harbor an invasive tumor. In a second paper, published in the journal Advanced Materials, the researchers showed they could enhance the nanorods’ imaging abilities by adding molecules that absorb near-infrared light to the surface of the nanorods. Because of this surface-enhanced Raman scattering, very low concentrations of nanorods—only a few parts per trillion in water—can be detected.

Another advantage of the nanorods is that by coating them with different types of light-scattering molecules, they can be designed to simultaneously gather multiple types of information—not only whether there is a tumor but also whether there is a risk of it invading other tissues, whether it is a primary or secondary tumor, and where it originated.

This work, which is detailed in the paper “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. Investigators from the Indian Institute of Technology, Madras, also participated in this study. An abstract is available at the journal’s Web site.

There is no abstract available for the second paper “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating.”

Provided by National Institute (news : web)

Explore further: Research reveals how our bodies keep unwelcome visitors out of cell nuclei

add to favorites email to friend print save as pdf

Related Stories

Targeting tumors using tiny gold particles

May 04, 2009

(PhysOrg.com) -- It has long been known that heat is an effective weapon against tumor cells. However, it's difficult to heat patients' tumors without damaging nearby tissues.

Nanorods show benefits cancer treatment

Mar 14, 2006

Researchers at the Georgia Institute of Technology and the University of California, San Francisco, have found an even more effective and safer way to detect and kill cancer cells. By changing the shapes of ...

Gold nanorods shed light on new approach to fighting cancer

Oct 16, 2007

Researchers have shown how tiny "nanorods" of gold can be triggered by a laser beam to blast holes in the membranes of tumor cells, setting in motion a complex biochemical mechanism that leads to a tumor cell's self-destruction.

Engineering new uses for gold

Aug 22, 2008

The glitter of gold may hold more than just beauty, or so says a team of MIT researchers that is working on ways to use tiny gold rods to fight cancer, deliver drugs and more.

Golden Nanorods for Medical Applications

Sep 08, 2008

(PhysOrg.com) -- Gold nanoparticles are under consideration for a number of biomedical applications, such as tumor treatment. A German-American research team at Carnegie Mellon University in Pittsburgh, Hunter ...

Gold nanorods brighten future for medical imaging

Oct 25, 2005

Researchers at Purdue University have taken a step toward developing a new type of ultra-sensitive medical imaging technique that works by shining a laser through the skin to detect tiny gold nanorods injected ...

Recommended for you

Study shows graphene able to withstand a speeding bullet

7 hours ago

(Phys.org)—A team of researchers working at Rice University in the U.S. has demonstrated that graphene is better able to withstand the impact of a bullet than either steel or Kevlar. In their paper published ...

Nanomaterials to preserve ancient works of art

Nov 27, 2014

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

Nov 27, 2014

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.