Planck Satellite ready to measure the Big Bang

May 11, 2009
Full sky map of predicted CMB temperature fluctuations due to changing gravitational fields in the local universe, which was computed at MPA. Image: Maturi et al. 2007, Astronomy & Astrophysics 476, 83

(PhysOrg.com) -- The last tests of the Ariane 5 rocket system have been finished and ESA's Planck satellite is sitting ready for launch at the Guiana Space Centre in Kourou. Together with ESA's space telescope Herschel, Planck will lift off into space on 14 May to begin its studies of the cosmic microwave radiation and of the clues it gives about the Big Bang, the earliest phases of the cosmic history, and the structure and composition of the Universe. The Max Planck Institute for Astrophysics (MPA) in Garching has developed important software components for Planck and is getting ready to participate in the analysis and scientific interpretation of the mission data.

According to the standard model of cosmology, our Universe began 13.7 billions years ago in a Big Bang, the origin of space and time. The Cosmic Microwave Background (CMB) is the relic heat from this Big Bang, released 380.000 years after beginning and still travelling freely through space today. At that early time, weak fluctuations of matter density were present, which are seen as variations of temperature in the CMB. By observing these fluctuations, cosmologists can infer how the large-scale structure of today’s Universe - galaxies, galaxy clusters and filaments - was formed.

The Planck satellite will be placed at the second Lagrangian point of the Sun-Earth-Moon system (L2), located about 1.5 million kilometres away from the Earth - four times the distance to the Moon. The satellite will spin around its own axis, always point towards the Sun, with each rotation recording another strip of the sky and mapping the sky’s temperature to an accuracy of about one millionth of a degree. The data are sent to Earth and converted into temperature maps of the sky in data processing centres in France and Italy. What the maps look like depends on certain characteristics of the Universe, for example on the curvature of space. For hypothetic Universes with specified properties, computer simulations using the MPA software generate virtual maps which will be compared with maps of the real sky. "From the comparison we can draw conclusions about the structure of our own Universe, for example how much ordinary matter and dark energy exist in it", explains Torsten Enßlin, head of the Planck group at MPA.

The physics of structure formation and the formation of galaxies will be studied via the so-called Sunyaev Zeldovich effect - the heating of CMB photons by scattering in the atmosphere of galaxy clusters. Due to this effect distant galaxy clusters become visible as "shadows" in front the cosmic microwave background.

However the galaxy clusters are only the densest parts of the cosmic matter distribution. 85 percent of the cosmic matter remains invisible and dark. The composition of this is still not known. From their computer simulations, MPA cosmologists have shown how the CMB is influenced the gravitational field of dark matter. The unseen structures of dark matter can therefore be deduced from temperature variations in the CMB. This requires the scientists to analyse the Planck data with statistical methods, obtaining important information on the structure and future development of the Universe.

Moreover, the mission is expected to detect thousands of distant objects in a frequency range barely studied so far, and so to offer new insights into the physics of galaxies, active galactic nuclei and quasars in the submillimetre domain. These will show Planck scientists energetic processes in the immediate vicinity of massive black holes. Planck may also help us to understand the birth of the first stars in the Universe and the structure of our own galaxy, the Milky Way.

"With the start of the Planck satellite a dream comes true", says Rashid Sunyaev, MPA director and pioneer of CMB research. "Planck will provide the most precise data on the early Universe ever. We have never been so close to the Big Bang." "We will understand the past of our Universe’s past and throw a glance at its future", adds Sunyaev’s colleague Simon White. "Will it keep on expanding for ever or some day collapse back upon itself? What is the nature of the mysterious dark energy causing this expansion? Planck will provide an answer to many important questions of cosmology. The satellite is the most powerful tool ever for studying the developed."

Provided by Max Planck Institute

Explore further: Image: Chandra's view of the Tycho Supernova remnant

add to favorites email to friend print save as pdf

Related Stories

Planck instruments ready for integration

Nov 16, 2006

Engineers are ready to begin integrating the scientific instruments into ESA's Planck satellite. The pair of instruments will allow the spacecraft to make the most precise map yet of the relic radiation left ...

Introducing the 'coolest' spacecraft in the universe

Feb 09, 2007

The European Space Agency's Planck mission, which will study the conditions present in our Universe shortly after the Big Bang, is reaching an important milestone with the integration of instruments into the satellite at ...

Astronomers find gaping hole in the Universe

Aug 23, 2007

University of Minnesota astronomers have found an enormous hole in the Universe, nearly a billion light-years across, empty of both normal matter such as stars, galaxies and gas, as well as the mysterious, ...

Recommended for you

Image: Chandra's view of the Tycho Supernova remnant

Jul 25, 2014

More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic expansion of ...

Satellite galaxies put astronomers in a spin

Jul 24, 2014

An international team of researchers, led by astronomers at the Observatoire Astronomique de Strasbourg (CNRS/Université de Strasbourg), has studied 380 galaxies and shown that their small satellite galaxies almost always ...

Video: The diversity of habitable zones and the planets

Jul 24, 2014

The field of exoplanets has rapidly expanded from the exclusivity of exoplanet detection to include exoplanet characterization. A key step towards this characterization is the determination of which planets occupy the Habitable ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Herries
2.3 / 5 (3) May 14, 2009
GOD created the universe approx 6000 years ago. Google 'radio polonium halos. Top result.