Report examines limits of national power grid simulations

May 07, 2009

America's power grid today resembles the country's canal system of the 19th Century. A marvel of engineering for its time, the canal system eventually could not keep pace with the growing demands of transcontinental transportation.

More than 150 years later, America's infrastructure is again changing in ways that its designers never anticipated. Distributed and intermittent electricity generation, such as , is rapidly expanding, new smart meters are giving consumers more control over their , and plug-in hybrid electric vehicles may someday radically increase the overall demand for electricity. The evolution of America's energy needs has forced scientists and engineers to re-examine the operations, efficiency and security of the national . The creation of a more secure and efficient national power grid requires significant innovations in the way we transmit electricity and monitor its use.

To better assess the challenges facing the power grid, the U.S. Department of Energy's Argonne National Laboratory hosted a workshop that brought together power system and modeling experts from federal agencies, national laboratories and academia.

"Modeling and simulation have proved to be effective tools for the power industry on many levels," said Mark Petri, Argonne's technology development director and one of the workshop's organizers. "We need to develop a comprehensive and integrated approach that will enable us to better understand the full implications of an evolving power grid as we plan for future demand and power sources."

The workshop centered on the need for new methods to simulate the national power grid by modeling the creation and flow of electric power as well as the grid's connection to other critical infrastructures, such as transportation, gas, water and communications. Through detailed simulations of how electric power is supplied and transferred around the country, researchers can bolster not only the grid's security but also its reliability, efficiency and resiliency.

"Implementing smart grid technologies on a large scale will not be trivial," Petri added. "The challenges go beyond technical and economic issues. The smart grid technologies could fundamentally change how national power grid systems operate and respond to disruptions."

Because of the great diversity of ways in which electricity is created, distributed and consumed, engineers face a challenge in creating reliable models of large power networks. They have to deal with the intermittent nature of some of the sources (like wind or solar), optimize how power is transmitted and balance economic, security and environmental priorities when finding solutions.

"In the short-term," Petri said, "these simulations could help devise ways to solve the problem of grid congestion, which currently costs consumers many hundreds of millions of dollars each year. Even small improvements in grid efficiency that better models and simulations would produce would make the investment cost-effective."

The workshop, which was sponsored by U.S. Department of Homeland Security Science and Technology Directorate, identified barriers that a national grid simulation capability would need to overcome to be effective. The findings of the workshop appear in the report "National Power Grid Simulation Capability: Needs and Issues." According to Petri, an operational plan for a national power grid simulation capability that engages industry to better understand their needs, capabilities and concerns would support a more secure and reliable electric power grid system for the future.

Source: Argonne National Laboratory (news : web)

Explore further: Lifting the brakes on fuel efficiency

add to favorites email to friend print save as pdf

Related Stories

Smart Grid Technology: Vulnerable To Hackers

Mar 23, 2009

(PhysOrg.com) -- Smart Grids are digitally based electricity distribution and transmission systems and test have shown that a hacker can break into the system resulting in a massive blackout.

Transmission - Grains of insight into the grid

Aug 13, 2004

The way growing piles of sand behave -- with bursts of energy that result in large and small avalanches -- has served as a model for fusion researchers seeking insight into the way magnetically confined plasmas behave in ...

Recommended for you

Lifting the brakes on fuel efficiency

17 hours ago

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Researchers uncover likely creator of Bitcoin

The primary author of the celebrated Bitcoin paper, and therefore probable creator of Bitcoin, is most likely Nick Szabo, a blogger and former George Washington University law professor, according to students ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...