Visualizing virus replication in three dimensions

May 07, 2009
This is the cover illustration of the newest issue of Cell Host & Microbes. In the background in gray is a normal, two-dimensional image of the virus on an electron microscope. The 3D model is superimposed. The tubules of the endoplasmic reticulum and inside them the balloon-like vesicles where the dengue virus replicates its genome can be seen. Credit: Hygiene Institute at Heidelberg University Hospital

Dengue fever is the most common infectious disease transmitted by mosquitoes - some 100 million people around the world are infected. Researchers at the Hygiene Institute at Heidelberg University Hospital were the first to present a three-dimensional model of the location in the human cell where the virus is reproduced.

Their research provides an insight into the exact process of and serves as a model for other viruses whose replication is still unclear, such as the . In addition, it offers new approaches for developing measures to prevent or treat dengue fever. Up to now, neither a vaccine nor a specific antiviral therapy exists.

Professor Dr. Ralf Bartenschlager, director of the Department of at the Heidelberg Hygiene Institute and his team, working in cooperation with colleagues from the European Molecular Biology Laboratory (EMBL) have published their study in the latest issue of the prestigious journal Cell Host & Microbes.

Viruses do not have a metabolism and cannot produce proteins from their genetic material (RNA or DNA) on their own. They can replicate only inside a host cell - but where and how exactly does this take place? The answer to this question is crucial for developing therapy.

Viruses transform human cell membranes for their purposes

Dengue viruses reproduce in what is known as the endoplasmic reticulum, a membrane network interconnected with the nuclear envelope; this is where proteins are synthesized. The dengue virus uses this membrane network and transforms it for its own use.

"We now know that viral RNA is replicated in vesicles in the endoplasmic reticulum and is secreted through tiny pores. We were also able to show that replication of the virus genome and its encapsulation in new virus particles are directly linked," said Professor Bartenschlager. The new virus genomes are secreted through pores into the intracellular space where they are incorporated into pre-stages of viruses and then penetrate the endoplasmic reticulum a second time. There they are enveloped in a membrane that disguises them for the cell so that they can be secreted like normal cellular material. The reproduction cycle can begin again.

More information: Sonja Welsch, Sven Miller, Ines Romero-Brey, Andreas Merz, Christopher Bleck, Paul Walther, Stephen D. Fuller, Claude Antony, Jacomine Krijnse-Locker, Ralf Bartenschlager, Composition and Three-Dimensional Architecture of the Dengue Replication and Assembly Sites, Cell Host & Microbes 2009, 5, 4.

Source: University Hospital Heidelberg (news : web)

Explore further: Fighting bacteria—with viruses

add to favorites email to friend print save as pdf

Related Stories

Penn researchers discover new mechanism for viral replication

Aug 16, 2007

Researchers at the University of Pennsylvania School of Medicine have identified a new strategy that Kaposi’s Sarcoma Associated Herpesvirus (KSHV) uses to dupe infected cells into replicating its viral genome. This allows ...

Recommended for you

Fighting bacteria—with viruses

2 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

2 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0