Why Are Galaxies So Smooth?

May 01, 2009 by Laura Simurda
This image from NASA's Spitzer Space Telescope shows the spiral galaxy NGC 2841, located about 46 million light-years from Earth in the constellation Ursa Major. Image credit: NASA/JPL-Caltech

(PhysOrg.com) -- Using NASA's Spitzer Space Telescope, an international team of astronomers has discovered streams of young stars flowing from their natal cocoons in distant galaxies. These distant rivers of stars provide an answer to one of astronomy's most fundamental puzzles: how do young stars that form clustered together in dense clouds of dust and gas disperse to form the large, smooth distribution seen in the disks of spiral galaxies like the Milky Way?

"When you look at the disks of in the infrared they are remarkably smooth. All of the older stars are evenly distributed. But stars aren't born that way; they're born in clusters and associations like the Pleiades cluster, or the association of in the Orion constellation of our own Milky Way galaxy. So the question is - why are the disks of galaxies so smooth?" said team leader David Block of the University of the Witwatersrand in South Africa.

Astronomers know that the clusters where stars form begin to disappear when their ages reach several hundred million years. A few mechanisms are thought to explain this: some clusters evaporate when random internal motions kick out stars one by one, and other clusters disperse as a result of collisions among the clouds where they were born. Zooming out to mechanisms operating on larger scales still, shearing motions caused by the galaxy's rotation around its center disperses the clusters of clusters of young stars.

"Our analysis now answers the grand puzzle. By finding a myriad of streams of young stars all over the disks of galaxies we studied, we see that the mechanism for pulling the clusters of young stars apart is shearing motions of the parent galaxy. These streams are the 'missing link' we needed to understand how the disks of galaxies evolve to look the way they do," said Block.

Crucial to this discovery was finding a way to image previously hidden young stellar streams in galaxies millions of light-years away. To do this the team used high-resolution infrared observations from the Spitzer.

Using infrared rather than visible light to look at the galaxies allowed the group to pick out stars at just the right age when the stars are just starting to spread out from their clusters.

"Spitzer observes in the infrared where 100-million-year-old populations of stars dominate the light," noted co-author Bruce Elmegreen, from IBM's Research Division in New York. "Younger regions shine more in the visible and ultraviolet parts of the spectrum, and older regions get too faint to see. So we can filter out all the stars we don't want by taking pictures with an infrared camera."

Infrared is also important because light in this part of the spectrum can penetrate the dense dust clouds surrounding the clusters where stars form.

"Dust blocks optical starlight very effectively," said Robert Gehrz of the University of Minnesota, "but infrared light with its longer wavelength goes right around the dust particles blocking our view. This allows the infrared light from young stars to be seen more clearly."

But even when the images are taken in the infrared, they are still dominated by the light from the smooth older disks of galaxies, not the faint tracks of young dispersing clusters. Special mathematical manipulations were needed to pick out the clusters, whose faint tracks can still be seen precisely because they are not smooth.

Team member Ivanio Puerari of the Instituto Nacional de Astrofisica, Optica y Electronica in Puebla, Mexico used a technique invented by mathematician Jean Baptiste Fourier in the early 1800's. The technique is effectively a spatial filter that picks out structure on the physical scale where star formation occurs. "The structures cannot be seen on the original Spitzer images with the human eye," noted Puerari.

"The combination of the Fourier filtering and infrared images highlighted regions of just the right size and the right age. To then unveil so many star streams in the disks of galaxies was unimaginable a year ago. This discovery continues to highlight the enormous potential of the to make contributions none of us could have dreamed possible," commented Giovanni Fazio from the Harvard-Smithsonian Center for Astrophysics, project leader for the Spitzer Infrared Array Camera team used to take the pictures, and co-author of the discovery.

"Galileo, as both astronomer and mathematician, would have been proud. It is a wonderful interplay between the use of astronomical observations and mathematics and computers, exactly 400 years since Galileo used his telescope to examine our in 1609," Fazio concluded.

Provided by JPL/NASA (news : web)

Explore further: Two families of comets found around nearby star Beta Pictoris

add to favorites email to friend print save as pdf

Related Stories

Antennae Galaxies

May 19, 2008

This image of the Antennae galaxies is the sharpest yet of this merging pair of galaxies. During the course of the collision, billions of stars will be formed. The brightest and most compact of these star ...

Colliding galaxies make love, not war

Oct 17, 2006

A new Hubble image of the Antennae galaxies is the sharpest yet of this merging pair of galaxies. As the two galaxies smash together, billions of stars are born, mostly in groups and clusters of stars. The ...

Astronomers report mysterious giant star clusters

Jan 10, 2006

An international team of astronomers reported evidence for the formation of mysterious "super star clusters" Jan. 9 at the annual meeting of the American Astronomical Society in Washington, D.C. These star ...

Planets Living on the Edge

Dec 17, 2008

(PhysOrg.com) -- Some stars have it tough when it comes to raising planets. A new image from NASA's Spitzer Space Telescope shows one unlucky lot of stars, born into a dangerous neighborhood. The stars themselves ...

Galaxies Don Mask of Stars in New Spitzer Image

Apr 26, 2006

A pair of dancing galaxies appears dressed for a cosmic masquerade in a new image from NASA's Spitzer Space Telescope. The infrared picture shows what looks like two icy blue eyes staring through an elaborate, ...

'Big baby' galaxy found in newborn Universe

Sep 28, 2005

The NASA/ESA Hubble Space Telescope and NASA’s Spitzer Space Telescope have teamed up to 'weigh' the stars in distant galaxies. One of these galaxies is not only one of the most distant ever seen, but it appears to be unusually ...

Recommended for you

New window on the early Universe

15 hours ago

Scientists at the Universities of Bonn and Cardiff see good times approaching for astrophysicists after hatching a new observational strategy to distill detailed information from galaxies at the edge of ...

Chandra's archives come to life

18 hours ago

Every year, NASA's Chandra X-ray Observatory looks at hundreds of objects throughout space to help expand our understanding of the Universe. Ultimately, these data are stored in the Chandra Data Archive, ...

New robotic telescope revolutionizes the study of stars

18 hours ago

In the last 8 months a fully robotic telescope in Tenerife has been carrying out high-precision observations of the motion of stellar surfaces. The telescope is the first in the SONG telescope network and ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Mercury_01
not rated yet May 02, 2009
oh, ok.