Pillars of Creation formed in the shadows

Apr 23, 2009
'Pillars of Creation' in the Eagle Nebula. Credit: ESA/NASA

Research by astronomers at the Dublin Institute of Advanced Studies suggests that shadows hold the key to how giant star-forming structures like the famous "Pillars of Creation" take shape.

The pillars are dense columns within giant clouds of dust and gas where form.  Several theories have been proposed to explain why the pillars develop around the edge of ionised gas bubbles surrounding young, very hot stars. Using computer models, the Dublin group has found that partially-shadowed clumps of gas tend to creep towards darker areas, causing pile-ups behind dense knots of gas and dust that screen the intense emitted by the stars.

Jonathan Mackey, who is presenting the results at the European Week of Astronomy and Space Science in Hatfield said, “We created a simulation with a random distribution of lots of dense clouds with different sizes and shapes.  We found that in certain cases a number of clouds can merge together in the shadows to form structures that look very like observed pillars.  They are sufficiently dense to match the observations, can form in about 150 000 years and can survive for about 100 000 years.  Although this is a preliminary study, we believe our results are quite robust and will be confirmed by more detailed modelling.”

Still from 3-D simulation showing development of pillars after 200 thousand years. Credit: Mackey/Lim

The team, led by Dr Andrew Lim, found that the configuration of clumps of gas had to be favourable for the pillars to form.  Some age estimates put the Eagle Nebula pillars at no more than 100 000 years old, and models show that the shadow from a single clump would not attain the density to form a pillar in that relatively short timescale.

“Many of our models do not produce pillars that are as long and narrow as those in the Eagle Nebula, at least not at the observed gas density.  It needs the right configuration of dense clumps of gas to form a long pillar.  Unless the shadowed region is already very dense to begin with, it just takes too long to collect and organise the gas into a pillar,” said Lim.

The group plans to add increasing levels of realism to the model over the next couple of years, bringing in more accurate representations of the complex chemistry of interstellar gas, the effects of radiation from diffuse sources.  Adding in the effects of gravity will also be important as the pillars contain dense gas condensations which are in the process of collapsing under their own weight to form the next generation of stars.

Mackey said, "Gravity is relatively unimportant when the pillars are forming, but there comes a point when they get very dense and it cannot be ignored any longer.  We plan to include gravitation in future work so that we can study the next generation of stars which are forming in the pillars."

Source: Royal Astronomical Society (news : web)

Explore further: Professional and amateur astronomers join forces

add to favorites email to friend print save as pdf

Related Stories

Peering into the Pillars of Creation

Feb 15, 2007

A new look at the famous "Pillars of Creation" with NASA’s Chandra X-ray Observatory has allowed astronomers to peer inside the dark columns of gas and dust. This penetrating view of the central region of ...

Spitzer Captures Fruits of Massive Stars' Labors

May 31, 2005

The saga of how a few monstrous stars spawned a diverse community of additional stars is told in a new image from NASA's Spitzer Space Telescope. The striking picture reveals an eclectic mix of embryonic stars ...

APEX reveals glowing stellar nurseries

Nov 11, 2008

The region, called RCW120, is about 4200 light years from Earth, towards the constellation of Scorpius. A hot, massive star in its centre is emitting huge amounts of ultraviolet radiation, which ionises the ...

Recommended for you

Professional and amateur astronomers join forces

2 hours ago

(Phys.org) —Long before the term "citizen science" was coined, the field of astronomy has benefited from countless men and women who study the sky in their spare time. These amateur astronomers devote hours ...

A star's early chemistry shapes life-friendly atmospheres

Apr 23, 2014

Born in a disc of gas and rubble, planets eventually come together as larger and larger pieces of dust and rock stick together. They may be hundreds of light-years away from us, but astronomers can nevertheless ...

Image: X-raying the cosmos

Apr 22, 2014

When we gaze up at the night sky, we are only seeing part of the story. Unfortunately, some of the most powerful and energetic events in the Universe are invisible to our eyes – and to even the best optical ...

Mysteries of nearby planetary system's dynamics solved

Apr 22, 2014

Mysteries of one of the most fascinating nearby planetary systems now have been solved, report authors of a scientific paper to be published by the journal Monthly Notices of the Royal Astronomical Society in its ...

User comments : 0

More news stories

Habitable exoplanets are bad news for humanity

Last week, scientists announced the discovery of Kepler-186f, a planet 492 light years away in the Cygnus constellation. Kepler-186f is special because it marks the first planet almost exactly the same size as Earth ...

Professional and amateur astronomers join forces

(Phys.org) —Long before the term "citizen science" was coined, the field of astronomy has benefited from countless men and women who study the sky in their spare time. These amateur astronomers devote hours ...

First-of-its-kind NASA space-weather project

A NASA scientist is launching a one-to-two-year pilot project this summer that takes advantage of U.S. high-voltage power transmission lines to measure a phenomenon that has caused widespread power outages ...