Solar sigmoids explained

Apr 20, 2009
This figure shows the time evolution and final eruption of the sigmoid. It consists of three columns (time is running from top to bottom). Columns 1 and 2 show results from numerical experiments. The yellow isosurfaces are surfaces of electric current (left panels). Column 2 (middle panels) shows temperature. Column 3 shows 'temperature' (intensity) as it is recorded by the observations (Hinode mission). Notice that the agreement on the shape of the sigmoid, internal structure and thermal distribution along the sigmoid, between numerical experiments and observations is very good and fairly balanced. Notice, that even the 'flaring' episode (flashing) at the middle of the sigmoid at the down-right snapshot from observations is reproduced exceptionally well by our numerical experiments (down-middle). Credit: NASA / STFC / ISAS / JAXA / A. Hood (St. Andrews), V. Archontis (St. Andrews)

(PhysOrg.com) -- 'Sigmoids' are S-shaped structures found in the outer atmosphere of the Sun (the corona), seen with X-ray telescopes and thought to be a crucial part of explosive events like solar flares. Now a group of astronomers have developed the first model to reproduce and explain the nature of the different stages of a sigmoid’s life.

'Sigmoids' are S-shaped structures found in the outer atmosphere of the Sun (the corona), seen with X-ray telescopes and thought to be a crucial part of explosive events like solar flares. Now a group of astronomers have developed the first model to reproduce and explain the nature of the different stages of a sigmoid’s life. Professor Alan Hood and Dr. Vasilis Archontis, both from the Mathematical Institute at St. Andrews University, Scotland, will present the team’s results at the European Week of Astronomy and Space Science conference at the University of Hertfordshire. Prof. Hood will present some of the work in a talk on Monday 20th April, supplemented by a poster by Dr. Vasilis Archontis on Thursday 23rd April, which will cover the model in more detail.

Recently, the X-Ray Telescope (XRT) on board the Hinode was used to obtain the first images of the formation and eruption phase of a sigmoid at high resolution. These observations revealed that the structure of the sigmoid is complex: it consists of many, differently oriented, loops that all together form two opposite J-like bundles or an overall S-shape. They also showed that at the end of its life the sigmoid produces a 'flare' eruption.

Over the years a series of theoretical and numerical models have been proposed to explain the nature of sigmoids but until now there was no explanation on how such complex structures form, erupt and fade away. The new model describes how sigmoids consist of many thin and twisted layers (or ribbons) of strong electric current. When these layers interact it leads to the formation of the observed powerful flares and the eruption of strong magnetic fields which carry highly energetic particles into interplanetary space.

Dr. Archontis sees the connection between the two astronomers’ model and work on predicting solar flares. He remarks, “Sigmoids work as 'mangers' or 'cocoons' for solar eruptions. There is a high probability that they will result in powerful eruptions and other explosive events. Our model helps scientists understand how this happens.”

Prof. Hood adds that these events have real significance for life on Earth, “Sigmoids are among the most interesting features for scientists trying to forecast the solar eruptions - events that can disrupt telecommunications, damage satellites and affect the way navigation systems are operated'.

Provided by Royal Astronomical Society (news : web)

Explore further: The changing laws that determine how dust affects the light that reaches us from the stars

add to favorites email to friend print save as pdf

Related Stories

Giant pipe organ in the solar atmosphere

Apr 19, 2007

Astronomers have found that the atmosphere of the Sun plays a kind of heavenly music. The magnetic field in the outer regions (the corona) of our nearest star forms loops that carry waves and behave rather like a musical ...

Hinode's X-Ray Telescope Reveals the Sun's Secrets

Mar 21, 2007

Even though the sun is the closest star to Earth and has been studied for hundreds of years, it still holds surprises. The recently launched Hinode spacecraft is one of the latest observatories to probe the ...

The Spooky Sun

Oct 31, 2006

Just in time for Halloween, astronomers have taken a haunting new portrait of the sun. In this color-coded image from the Hinode spacecraft (formerly Solar-B), the sun glows eerily orange as though celebrating ...

Science with the solar space observatory Hinode

Mar 20, 2008

The solar space observatory Hinode was launched in September 2006, with the name "Hinode" meaning sunrise in Japanese. The Hinode satellite carries a solar optical telescope (SOT), an X-ray telescope (XRT), ...

Skeleton Of Sun's Atmosphere Reveals Its True Nature

Apr 16, 2007

The Sun's outer atmosphere or corona is incredibly complex, as shown in observations from space. It is also extremely hot, with a temperature of over a million degrees by comparison with that of the Sun's ...

Solar Eruption Seen in Unprecedented Detail

May 27, 2008

On April 9, the Sun erupted and blasted a bubble of hot, ionized gas into the solar system. The eruption was observed in unprecedented detail by a fleet of spacecraft, revealing new features that are predicted by computer ...

Recommended for you

ESO image: A study in scarlet

Apr 16, 2014

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

Apr 15, 2014

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Pushy neighbors force stellar twins to diverge

Apr 15, 2014

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

earls
1 / 5 (1) Apr 20, 2009
"The new model describes how sigmoids consist of many thin and twisted layers (or ribbons) of strong _electric current_."

GASP! Be still, my beating heart!
mgmirkin
2.3 / 5 (4) Apr 20, 2009
Hey, I'll go you one better Earls!

Anyone else notice the distinct similarity between the "Sigmoids" and Venus' double-eyed vortices? What's good for the goose is good for the gander! *Whispers* "It's electric..."

(Happy Birthday, Venus Express!)
http://www.esa.in...subhead2

Ohh yes! Indeed!
~Michael

More news stories

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...