'Taco shell' protein: Orientation of middle man in photosynthetic bacteria described

Apr 13, 2009 By Tony Fitzpatrick
Diagram of Fenna-Matthews-Olson protein.

(PhysOrg.com) -- Researchers at Washington University in St. Louis have figured out the orientation of a protein in the antenna complex to its neighboring membrane in a photosynthetic bacterium, a key find in the process of energy transfer in photosynthesis.

Robert Blankenship, Ph.D., Markey Distinguished Professor of Biology and Chemistry in Arts & Sciences, led a team that for the first time combined chemical labeling with mass spectroscopy to verify the orientation. The team also included Michael Gross, Ph.D., WUSTL Professor of Chemistry, Immunology and Medicine, and Chemistry graduate students Jianzhong Wen and Hao Zhang. A paper describing this work appeared recently in the Proceedings of the National Academy of Sciences USA.

In green sulfur bacteria, which live in extremely dim environments with scarce visible light, the membrane-attached Fenna-Matthews-Olson (FMO) antenna serves as a sort of wire connecting the large peripheral chlorosome antenna complex with the organism's reaction center.

These bacteria are related to extreme heat-loving bacteria that live at thermal vents on the ocean floor. Their antenna systems are much larger and more pronounced than those of other bacteria to take advantage of whatever geothermal light they can harvest.

Blankenship fondly refers to the FMO protein as the "taco shell protein" because of its structure: its ribbon-like backbone wraps around three clusters of seven chlorophylls, just like a taco shell around ground beef. The structure also is referred to as trimeric because of the three clusters.

The taco shell is a sort of "middleman" in the antenna system, sandwiched in between a larger antenna and a complex called the reaction center, where all the electron transfer chemistry takes place.

Most of the absorption of light is carried out by a complex called the chlorosome that then transfers the energy to the trimeric protein that in turn transfers to the reaction center.

transforms light, carbon dioxide and water into chemical energy in plants and some bacteria. The wavelike characteristic of this energy transfer process can explain its extreme efficiency, in that vast areas of phase space can be sampled effectively to find the most efficient path for energy transfer.

"We used a combination of tried and true methods, but two that hadn't been used together in the past," said Blankenship. "The surface of the protein has various amino acid residues, and some of those are reactive to the chemical probe we added into the system. The surface residues that react to the probe are then labeled, and we isolate the protein and characterize where the label is in the protein by using mass spectroscopy. That's a kind of footprinting analysis."

This allowed the researchers to determine how the protein is oriented on the membrane. The footprinting revealed that the energy will flow from the outer part of the antenna, through the mid-part and into the membrane where the reaction center is located.

"The bacteria use the energy of the pigments as a kind of ladder," he said. "As it goes on this ladder, it goes to lower and lower energy states and is guided down to the lowest energy state. That's the funneling effect — the physical guiding of the energy to the reaction center. By knowing exactly how this orientation is on the membrane, we determined the funneling property in a more precise way."

The trimeric protein — the taco shell protein — has a symmetry axis down the middle. The protein lays on the membrane with the symmetry axis perpendicular to the membrane. The combination of labeling and mass spectroscopy enabled the researchers to determine which side of the protein was up and which side was down.

"It turns out that the side that is down is the one that has the pigment with the lowest energy, which is exactly what you want to facilitate the ," Blankenship said. "That's what you would imagine if you designed it yourself."

The biochemical aspects of the project were done in the Blankenship lab, while the mass spectrometry analysis was done in the WUSTL National Institutes of Health Mass Spectrometry Resource Facility that is directed by Gross.

Provided by Washington University in St. Louis (news : web)

Explore further: Molecular gate that could keep cancer cells locked up

add to favorites email to friend print save as pdf

Related Stories

Electrons choose another path in photosynthesis protein

May 04, 2006

In the famous Robert Frost poem, "The Road Not Taken," the persona, forced to travel one of two roads, takes the one less traveled by, and "that has made all the difference." Chemists at Washington University ...

Quantum secrets of photosynthesis revealed

Apr 12, 2007

Through photosynthesis, green plants and cyanobacteria are able to transfer sunlight energy to molecular reaction centers for conversion into chemical energy with nearly 100-percent efficiency. Speed is the ...

Recommended for you

Molecular gate that could keep cancer cells locked up

5 hours ago

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

8 hours ago

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0