Genetic basis for migration

Mar 31, 2009

Scientists studying Eastern North American monarch butterflies (Danaus plexippus) have uncovered a suite of genes that may be involved in driving the butterflies to migrate towards Mexico for the winter. Their research, published in the open access journal BMC Biology, describes 40 genes that are linked to the butterflies' compulsion to orientate themselves by an internal 'sun compass' and begin the 4000km journey southwards.

Steven Reppert led a team of researchers from the University of Massachusetts Medical School who performed behavioral and on summer and migratory monarch butterflies. He said, "Our data are the first to provide a link between profiles in the brain and migratory state in any animal that undergoes long-distance migration. Moreover, our results also provide the first insights into gene expression patterns that may underlie sun compass orientation, a complex process involving the integration of temporal and spatial information".

Monarch butterflies begin flying south in the fall, using their and a sun compass to orientate themselves. After spending the winter in the warmer climes of Mexico, they begin moving northwards again through the Southern United States, breeding as they go, and spending the late summer in a non-migratory state in the Northern US. Unlike summer butterflies, some of whose offspring become fall migrants, the fall insects are not reproductively active - they have smaller reproductive organs and exhibit reduced . This dampening of their ardour is caused by a reduction in levels of Juvenile Hormone (JH), which allows the butterflies to live longer as well as stopping them from having sex and laying eggs during their long journey south.

The authors tested whether JH levels are also responsible for flight orientation. By treating fall butterflies with a potent JH analog, they induced a summer-like reproductive state, and then looked at their oriented flight behavior in a flight simulator, and gene expression profiles in their brains. Repperts said, "We found that orientated flight behavior was independent of JH activity. Furthermore, in contrast to the non-migratory summer butterflies, the fall butterflies showed significantly different activation patterns in a suite of 40 JH-independent genes, showing that seasonal changes in genomic function help define the migratory state".

Defining behavioral and molecular differences between summer and migratory monarch butterflies, Haisun Zhu, Robert J Gegear, Amy Casselman, Sriramana Kanginakudru and Steven M Reppert, BMC Biology (in press), www.biomedcentral.com/bmcbiol/

Source: BioMed Central (news : web)

Explore further: What gave us the advantage over extinct types of humans?

add to favorites email to friend print save as pdf

Related Stories

Monarchs fly south for the winter

Sep 12, 2005

As many as 300 million monarch butterflies are now flying south from Canada and the northern United States to winter in Mexico and Southern California.

How monarch butterflies are wired for navigation

May 04, 2005

In their extraordinary annual migration from North America to Mexico, monarch butterflies are known to use the angle of polarized sunlight as a celestial guide to help them keep to a straight and true path southward. But ...

Recommended for you

Genome yields insights into golden eagle vision, smell

10 hours ago

Purdue and West Virginia University researchers are the first to sequence the genome of the golden eagle, providing a bird's-eye view of eagle features that could lead to more effective conservation strategies.

Genetic code of the deadly tsetse fly unraveled

11 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

11 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

12 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...