New MRI signaling method could picture disease metabolism in action

Mar 26, 2009

Duke University chemists are using modified magnetic resonance imaging to see molecular changes inside people's bodies that could signal health problems such as cancer.

Their new method, reported in the March 27 issue of the research journal Science, makes more of the body's chemistry visible by MRI, said Warren Warren, James B. Duke Professor of chemistry at Duke.

Standard MRI and the functional MRI used for brain imaging enlist the hydrogen atoms in water to create a graphic display in response to and . But a huge array of water are needed to pull that off.

"Only one out of every 100,000 water molecules in the body will actually contribute any useful signal to build that image," Warren said. "The water signal is not much different between tumors and normal tissue, but the other internal chemistry is different. So detecting other molecules, and how they change, would aid diagnosis."

The Duke team has been able to see these other molecules with MRI by "hyperpolarizing" some atoms in a sample, adjusting the spins of their nuclei to drastically increase their signal. This creates large imbalances among the populations of those , making the molecules into more powerful magnets.

Unlike normal MRI, and a technique called "dynamic nuclear polarization" (DNP) which was used for this research, can produce strong MRI signals from a variety of other kinds of atoms besides water. Without hyperpolarization, detecting signals from atoms besides water is exceedingly difficult because the signal size is so small. But "these signals are strong enough to see, even though the molecules are much more complex than water," Warren said.

Warren's group uses what he calls the "first DNP hyperpolarizer in the South," which is installed in his laboratory. It also uses Duke's Small Facility to create custom molecular architectures.

"You thus have a signal that, at least transiently, can be thousands or ten thousands times stronger than regular hydrogen in an MRI," Warren said. "It lets you turn molecules you are interested in into MRI lightbulbs."

Duke's hyperpolarizer includes a superconducting magnet, a cryogenic cooling system that initially plunges temperatures to a scant 1.4 Kelvin degrees while microwave radiation transfers spin polarization from electrons to nuclei, and a heating system to rapidly warm the molecules back up.

Hyperpolarized spin states don't last for long inside the body, but ways have been found to lengthen them. Several years ago, another group discovered a method to make DNP work at room temperature in some biological molecules by substituting carbon-13 atoms for some of those molecules' normal carbon-12s. Unlike carbon-12, carbon-13 emits an NMR signal like hydrogen atoms do.

Using this room-temperature DNP, the biological molecule pyruvate can retain its MRI signal for as long as 40 seconds -- long enough to observe it undergoing rapid chemical change. "So you can watch pyruvate metabolize to produce lactate, acetic acid and bicarbonate -- all breakdown products that might correlate with cancer," Warren said. But most biological processes are much slower, and thus can't be seen with this method.

In its Science report, the Duke team describes a new method that can further extend the signals of molecules carrying swapped carbon-13s. It works by temporarily bottling-up the hyperpolarization in the longest-lived spin states -- called "singlet eigenstates" -- within specially designed molecular architectures. "You can actually use their own chemistries to get the molecules in and out of those protected states," Warren said.

For example, hyperpolarized populations locked within a specially prepared form of diacetyl -- a bacterially-made chemical that imparts buttery flavoring to foods -- can be stored using this method, according to the report. Once triggered, the MRI signal can be extended over many minutes before the spin states decay.

Thus bottled-up, the signals could be kept in temporary isolation. By dehydrating and shielding them from water within microscopic capsules, for example, these "signaling" molecules could be transported through the bloodstream to a potential disease site, Warren said.

Once at that site, a focused burst of ultrasound or heat could restore the molecules' missing water. That would cause a telltale signal to be released just as a rapidly progressing metabolic event was unfolding.

The Duke group is evaluating the potentials for a number of other possible signaling molecules, such as those involved in Parkinson's disease, osteoporosis and bladder control, said Warren, who has filed for a provisional patent.

Source: Duke University (news : web)

Explore further: Dolphin 'breathalyzer' could help diagnose animal and ocean health

add to favorites email to friend print save as pdf

Related Stories

Diagnosing skin cancers with light, not scalpels

Jun 04, 2007

In an early step toward nonsurgical screening for malignant skin cancers, Duke University chemists have demonstrated a laser-based system that can capture three-dimensional images of the chemical and structural changes under ...

Better MRI scans of cancers made possible

Jan 13, 2009

Researcher Kristina Djanashvili has developed a substance that enables doctors to get better MRI scans of tumours. On Tuesday 13 January, Djanashvili will be soon awarded a doctorate by TU Delft, Netherlands, for her work ...

Warming up for Magnetic Resonance Imaging

May 08, 2008

Standard magnetic resonance imaging, MRI, is a superb diagnostic tool but one that suffers from low sensitivity, requiring patients to remain motionless for long periods of time inside noisy, claustrophobic ...

Researchers decorate virus particles

Jun 14, 2006

Researchers at New York University have made chemical modifications to nanometer sized virus particles--a process that has the potential to improve magnetic resonance imaging (MRI) techniques. Their results are reported in ...

HYPER-CEST MRI breaks new ground in molecular imaging

Oct 19, 2006

Researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California at Berkeley have developed a new technique for Magnetic Resonance Imaging (MRI) that allows ...

Recommended for you

Triplet threat from the sun

6 hours ago

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

Towards controlled dislocations

Oct 20, 2014

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real ...

User comments : 0