Plastic protein protects bacteria from stomach acid's unfolding power

Mar 23, 2009

A tiny protein helps protect disease-causing bacteria from the ravaging effects of stomach acid, researchers at the University of Michigan and Howard Hughes Medical Institute have discovered.

Their findings were scheduled to be published online in the Proceedings of the National Academy of Sciences the week of March 23.

aids in food digestion and helps kill disease-causing . One way that acid kills bacteria is by causing the proteins in them to unfold and stick together in much the same way that heating an egg causes its proteins to form a solid mass. Just as it is virtually impossible for a cook to unboil an egg, it is also very difficult for bacteria to dissolve these clumps, so bacteria and most living things can die when exposed to acid or heat.

However, disease-causing bacteria such as the notorious E. coli are protected from stomach acid by a tiny protein called HdeA. In the PNAS paper, James Bardwell and coworkers describe how this protein works to protect bacteria. Like other proteins, HdeA unfolds and becomes more flexible when exposed to acid. But in a clever twist, the unfolding process that inactivates most other proteins activates HdeA. Once unfolded, this plastic protein molds itself to fit other bacterial proteins that have been made sticky by acid- induced unfolding.

"Just as plastic wrappers prevent candies from sticking together, HdeA prevents the unfolded proteins from sticking together and forming clumps," said Bardwell, a professor of molecular, cellular and developmental biology and of biological chemistry, as well as a Howard Hughes Medical Institute Investigator.

Postdoctoral fellow Tim Tapley, who spearheaded the research, said: "HdeA directly senses acid and changes from its inactive to active form within a fraction of a second." Instead of becoming completely unfolded in response to acid and sticking to itself, HdeA is only partially unfolded. It then uses the flexibility it gains through partial unfolding to rapidly become plastic enough to adapt to and bind various damaged proteins. This helps E. coli evade the otherwise deadly effects of stomach acid.

Source: University of Michigan (news : web)

Explore further: Tarantula toxin is used to report on electrical activity in live cells

add to favorites email to friend print save as pdf

Related Stories

How household bleach works to kill bacteria

Nov 13, 2008

Despite the fact that household bleach is commonly used as a disinfectant, exactly how it works to fight bacteria remained an open question. Now, a report in the November 14th issue of the journal Cell, a Cell Press publication, ...

Going from ulcers to cancer

Aug 22, 2008

Researchers have uncovered a big clue as to why some of the bacteria that cause stomach ulcers pose a greater risk for serious problems like stomach cancer than others; it turns out these bacteria can exploit the surrounding ...

Recommended for you

Scientists see how plants optimize their repair

3 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

Structure of an iron-transport protein revealed

9 hours ago

For the first time, the three dimensional structure of the protein that is essential for iron import into cells, has been elucidated. Biochemists of the University of Zurich have paved the way towards a better ...

Over-organizing repair cells set the stage for fibrosis

9 hours ago

The excessive activity of repair cells in the early stages of tissue recovery sets the stage for fibrosis by priming the activation of an important growth factor, according to a study in The Journal of Ce ...

User comments : 0