Scientists determine 3D structure of proteins in living cells for the first time

Mar 05, 2009

(PhysOrg.com) -- A University of Glasgow scientist was part of a team of researchers which has, for the first time, been able to determine the three-dimensional structure of protein in living cells.

The discovery, published in the latest edition of Nature, means scientists can now prove correct previous assumptions about the structure of proteins and how they change due to mutations and interactions with each other, as well as helping to find ways of correcting damage.

From the 1950s until now, scientists have only been able to closely examine the structures of proteins in their extracted and purified form (in vitro) but these conditions are very different from those inside living cells (in vivo).

Using a nuclear magnetic resonance (NMR) spectrometer - a machine that allows the distances between the nuclei of atoms within a molecule to be measured - researchers were able to work out the three dimensional shape of an example protein called TTHA1718 which was being produced in living cells of the bacterium E.coli.

Doctor Brian Smith of the Division of Molecular and Cellular Biology at the University of Glasgow provided expertise that helped the Japanese-based and funded international team, led by Yutaka Ito at the Tokyo Metropolitan University, pursue this particular line of research.

Doctor Smith, a lecturer in biochemistry and cell biology, said: “Most proteins don’t exist in isolation; instead they exist in a very crowded environment inside cells where they interact with other molecules and, critically, a large of class of proteins don’t have a definite three-dimensional structure when you take them out of living cells.

“This new, relatively inexpensive method of using NMR spectroscopy means we can now establish the structure of proteins whilst still in live cells and will tell us much more about how they work, and how they change when mutated.

“Our results open new avenues for investigation of protein structures at atomic resolution and how they change in response to biological events in living environments.

“We’ll now try the technique with other, more interesting proteins, which are unstable when you take them out of cells. Ultimately, it could help us discover whether drugs to correct damaged or mutated proteins are working and find new methods of fixing them.”

Proteins are made up of long chains of amino-acids and play essential roles in all aspects of life from metabolism, through detecting and responding to stimuli, to the way organisms are put together. Mutated proteins are implicated in a whole range of illnesses, from cancer to the neurodegenerative condition Huntington’s Disease.

Dr Smith leads a group at the University of Glasgow which uses a 600MHz NMR spectrometer, with a cryogenically cooled probe, to study the structure and functions of proteins and nucleic acids involved in processes in a variety of systems.

More information: A paper on the research entitled, ‘Protein structure determination in living cells by in-cell NMR spectroscopy’, is published in the journal Nature.

Provided by University of Glasgow

Explore further: Researchers uncover secrets of internal cell fine-tuning

add to favorites email to friend print save as pdf

Related Stories

Social Security spent $300M on 'IT boondoggle'

7 hours ago

(AP)—Six years ago the Social Security Administration embarked on an aggressive plan to replace outdated computer systems overwhelmed by a growing flood of disability claims.

Cheaper wireless plans cut into AT&T 2Q profit

7 hours ago

(AP)—AT&T posted lower net income for the latest quarter due to cheaper cellphone plans it introduced as a response to aggressive pricing from smaller competitor T-Mobile US.

Awarded a Pell Grant? Better double-check

7 hours ago

(AP)—Potentially tens of thousands of students awarded a Pell Grant or other need-based federal aid for the coming school year could find it taken away because of a mistake in filling out the form.

Recommended for you

Researchers uncover secrets of internal cell fine-tuning

14 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

Microscopic rowing—without a cox

15 hours ago

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like ...

Illuminating the dark side of the genome

21 hours ago

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

User comments : 0