Scientists determine 3D structure of proteins in living cells for the first time

Mar 05, 2009

(PhysOrg.com) -- A University of Glasgow scientist was part of a team of researchers which has, for the first time, been able to determine the three-dimensional structure of protein in living cells.

The discovery, published in the latest edition of Nature, means scientists can now prove correct previous assumptions about the structure of proteins and how they change due to mutations and interactions with each other, as well as helping to find ways of correcting damage.

From the 1950s until now, scientists have only been able to closely examine the structures of proteins in their extracted and purified form (in vitro) but these conditions are very different from those inside living cells (in vivo).

Using a nuclear magnetic resonance (NMR) spectrometer - a machine that allows the distances between the nuclei of atoms within a molecule to be measured - researchers were able to work out the three dimensional shape of an example protein called TTHA1718 which was being produced in living cells of the bacterium E.coli.

Doctor Brian Smith of the Division of Molecular and Cellular Biology at the University of Glasgow provided expertise that helped the Japanese-based and funded international team, led by Yutaka Ito at the Tokyo Metropolitan University, pursue this particular line of research.

Doctor Smith, a lecturer in biochemistry and cell biology, said: “Most proteins don’t exist in isolation; instead they exist in a very crowded environment inside cells where they interact with other molecules and, critically, a large of class of proteins don’t have a definite three-dimensional structure when you take them out of living cells.

“This new, relatively inexpensive method of using NMR spectroscopy means we can now establish the structure of proteins whilst still in live cells and will tell us much more about how they work, and how they change when mutated.

“Our results open new avenues for investigation of protein structures at atomic resolution and how they change in response to biological events in living environments.

“We’ll now try the technique with other, more interesting proteins, which are unstable when you take them out of cells. Ultimately, it could help us discover whether drugs to correct damaged or mutated proteins are working and find new methods of fixing them.”

Proteins are made up of long chains of amino-acids and play essential roles in all aspects of life from metabolism, through detecting and responding to stimuli, to the way organisms are put together. Mutated proteins are implicated in a whole range of illnesses, from cancer to the neurodegenerative condition Huntington’s Disease.

Dr Smith leads a group at the University of Glasgow which uses a 600MHz NMR spectrometer, with a cryogenically cooled probe, to study the structure and functions of proteins and nucleic acids involved in processes in a variety of systems.

More information: A paper on the research entitled, ‘Protein structure determination in living cells by in-cell NMR spectroscopy’, is published in the journal Nature.

Provided by University of Glasgow

Explore further: Genomes of malaria-carrying mosquitoes sequenced

add to favorites email to friend print save as pdf

Related Stories

LiquidPiston unveils quiet X Mini engine prototype

3 minutes ago

LiquidPiston has a new X Mini engine which is a small 70 cubic centimeter gasoline powered "prototype. This is a quiet, four-stroke engine with near-zero vibration. The company said it can bring improvements ...

Rare new species of plant: Stachys caroliniana

43 minutes ago

The exclusive club of explorers who have discovered a rare new species of life isn't restricted to globetrotters traveling to remote locations like the Amazon rainforests, Madagascar or the woodlands of the ...

New terahertz device could strengthen security

47 minutes ago

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

European space plane set for February launch

55 minutes ago

Europe's first-ever "space plane" will be launched on February 11 next year, rocket firm Arianespace said Friday after a three-month delay to fine-tune the mission flight plan.

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

Nov 27, 2014

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.