Unfolding 'nature's origami'

Mar 02, 2009

Sometimes known as "nature's origami", the way that proteins fold is vital to ensuring they function correctly. But researchers at the University of Leeds have discovered this is a 'hit and miss' process, with proteins potentially folding wrongly many times before they form the correct structure for their intended purpose.

The body's proteins carry out numerous functions and play a crucial role in the growth, repair and workings of cells. Sheena Radford, Professor of Structural Molecular Biology at the University of Leeds, says: "There's a fine balance between a protein folding into the correct shape so that it can carry out its job efficiently and it folding incorrectly, which can lead to disease. Just one wrong step can tip that balance."

Proteins are made of amino acids arranged in a linear chain and the sequence of these amino acids is determined by the gene producing them. How these chains of amino acids are preprogrammed to fold into their correct protein structure is one of the mysteries of life.

The culmination of many years' work, the collaborative study looked at the Im7 protein, a simple protein which is present in bacteria and has a crucial role to play in ensuring that bacteria do not kill themselves with the toxins they produce.

"Im7 is like an anti-suicide agent," says Professor Radford. "We studied it partly because of its simplicity and partly because of the known evolutionary pressure on the protein to fold correctly to enable the bacteria to survive."

The study has revealed that these proteins misfold en route to their intended structure, and importantly, has shown the forces at work during the folding process. While the chain of amino acids determines which shape a protein needs to take, the researchers discovered that it was the very amino acids central to the protein's function that were causing the misfolding.

"This breakthrough could have huge implications for understanding the evolution of today's protein sequences and in determining the balance between heath and disease," says Professor Radford. "It's fundamental science, but significant for our understanding of the mechanisms at work in the human body."

Source: University of Leeds

Explore further: Prions can trigger 'stuck' wine fermentations, researchers find

add to favorites email to friend print save as pdf

Related Stories

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

New technology offers insight into cholesterol

Aug 14, 2014

With new advanced techniques developed by the Copenhagen Center for Glycomics at the University of Copenhagen it is possible to study cells in greater detail than ever before. The findings have just been ...

Recommended for you

Hydrogen powers important nitrogen-transforming bacteria

10 hours ago

Nitrite-oxidizing bacteria are key players in the natural nitrogen cycle on Earth and in biological wastewater treatment plants. For decades, these specialist bacteria were thought to depend on nitrite as ...

New tool aids stem cell engineering for medical research

Aug 28, 2014

A Mayo Clinic researcher and his collaborators have developed an online analytic tool that will speed up and enhance the process of re-engineering cells for biomedical investigation. CellNet is a free-use Internet platform ...

User comments : 0