Old Cells Work Differently

Mar 01, 2009

The agglutination and accumulation of proteins in nerve cells are major hallmarks of age-related neurodegenerative illnesses such as Alzheimer's disease. Cellular survival thus depends on a controlled removal of excessive protein. Scientists at Johannes Gutenberg University Mainz (Germany) have now discovered exactly how specific control proteins regulate protein breakdown during the ageing process.

Every protein in our cells has a defined life span. At the end of this time and even sooner (e.g., in response to injury caused by external factors such as oxidative stress), proteins are eliminated by means of a specific protein degradation process. The quantity of proteins requiring elimination can rise in the face of ongoing oxidative stress, as can occur during the ageing process and in neurodegenerative illnesses. Damaged proteins that cannot be rendered harmless through the cell's "protein purification plant" tend to aggregate and accumulate, thereby threatening the survival of the cell. Nerve cells are especially susceptible to such protein accumulation, and the agglutination of proteins in nerve cells is a characteristic pathological symptom of a wide spectrum of age-associated neurodegenerative illnesses in humans, such as Alzheimer's disease and Parkinson's disease. Effective protein quality control is thus a requirement for the survival of all cells.

It has already been postulated for some time that it is specifically this quality control mechanism that changes with the cellular ageing process, but it is only now that Professor Christian Behl's team at the Institute of Pathobiochemistry of Mainz University has succeeded in finding the critical molecular proof. They were able to precisely identify the proteins that on the molecular level regulate both of the potential cellular pathways for protein degradation - the proteasome and the lysosome pathways. The scientists were able to show how the control function of these proteins changes during the cell's ageing process.

These new discoveries, principally based on doctoral research by Martin Gamerdinger, are of the greatest importance for understanding the pathogenesis of age-associated neurodegenerative illnesses, and were prominently published in the EMBO Journal on 19 February. "We will only be able to discover and investigate the precise causes of age-associated neurodegenerative illnesses such as Alzheimer's disease and develop causal therapies if we closely consider the molecular changes that take place as nerve cells age. Alzheimer's is one of the diseases typically associated with old age; it has its origin and progresses in old nerve cells," emphasizes Christian Behl, confirming the importance of Gamerdinger's findings.

Collaborators in the research project were Professor Uwe Wolfrum of the Institute of Zoology of Johannes Gutenberg University Mainz and Professor Ulrich Hartl of the Max Planck Institute of Biochemistry in Martinsried near Munich. They focused their research on defining the special role of the proteins BAG1 and BAG3 in protein degradation during the ageing process. They were able to demonstrate that BAG1 and BAG 3 regulate the proteasomal and lysosomal protein elimination pathways, respectively. "It is interesting that there is a switch from BAG1 to BAG3 that accompanies the cellular ageing process, and this change results in increased activation of the lysosomal protein breakdown pathway- the so-called ‘macroautophagy' pathway," explains first author Martin Gamerdinger. He started by studying human fibroblasts, and then successfully reproduced his findings in nerve cells.

A similar BAG3-mediated, considerably more potent macroautophagy pathway also becomes predominant in the ageing rodent brain; the authors postulate that this change may be a way of compensating for the increased load of damaged proteins in older cells. The dysfunction of this molecular switch as individuals age may be the reason for the malfunction of the cellular "protein purification plant" and account for the subsequent accumulation of proteins in nerve cells, as occurs in human neurodegenerative diseases. This will be investigated in more detail in future studies using specific disease models.

More information: Protein quality control during ageing involves recruitment of the macroautophagy pathway by BAG3, Martin Gamerdinger, Parvana Hajieva, A. Murat Kaya, Uwe Wolfrum, F. Ulrich Hartl & Christian Behl
The EMBO Journal, published online 19 February 2009; doi:10.1038/emboj.2009.29
www.nature.com/emboj/journal/v… bs/emboj200929a.html

Provided by Johannes Gutenberg University Mainz

Explore further: In between red light and blue light: Researchers discover new functionality of molecular light switches

add to favorites email to friend print save as pdf

Related Stories

US company sells out of Ebola toys

4 hours ago

They might look tasteless, but satisfied customers dub them cute and adorable. Ebola-themed toys have proved such a hit that one US-based company has sold out.

UN biodiversity meet commits to double funding

4 hours ago

A UN conference on preserving the earth's dwindling resources wrapped up Friday with governments making a firm commitment to double biodiversity aid to developing countries by 2015.

Partial solar eclipse over the U.S. on Thursday, Oct. 23

5 hours ago

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

Recommended for you

Scientists see how plants optimize their repair

3 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

Structure of an iron-transport protein revealed

9 hours ago

For the first time, the three dimensional structure of the protein that is essential for iron import into cells, has been elucidated. Biochemists of the University of Zurich have paved the way towards a better ...

Over-organizing repair cells set the stage for fibrosis

10 hours ago

The excessive activity of repair cells in the early stages of tissue recovery sets the stage for fibrosis by priming the activation of an important growth factor, according to a study in The Journal of Ce ...

User comments : 0