Energy simulation may explain turbulence mystery

Feb 26, 2009

(PhysOrg.com) -- A new 3D model linking magnetic fields to the transfer of energy in space might help solve a physics mystery first observed in the solar wind 15 years ago.

Scientists at The University of Alabama in Huntsville and Ruhr University in Bochum, Germany, developed the simulation while studying turbulence and energy transfer in the plasma carried away from the sun in the solar wind.

"We were attempting to understand the spacecraft observations that have seen this kind of turbulence," said Dr. Dastgeer Shaikh, an assistant professor in the Physics Department at UAHuntsville. "This was seen first by the Wind spacecraft launched in 1994, but has also been seen by other satellite instruments since then."

What Wind and the other spacecraft saw was particles in relatively small-scale solar wind eddies getting "hotter" than theories predicted they should get.

A theory published in 1941 by mathematician Andrey Kolmogorov established a generally accepted relationship between the size of eddies and the amount of energy released or dissipated: The smaller an eddy gets the more it interacts with its surroundings, so the greater the energy loss. This "lost" energy heats plasma in the solar wind.

The Kolmogorov law set the ratio between size and energy at 5/3: In a dynamic fluid, the amount of energy released should increase by a factor of five when the size of the eddy shrinks by two-thirds.

Except, apparently, in the solar wind and other regions influenced by magnetic fields. The Wind spacecraft and others found that in the solar wind's smaller eddies the link between size and energy jumps to 7/3, a 40 percent increase in the efficiency of energy transfer between larger and smaller plasma eddies in the turbulent solar wind.

The computer model developed by Shaikh and Dr. P.K. Shukla in Germany tries to explains the sudden increase by looking at the interaction between turbulent magnetic fields and the outward flowing currents of plasma ions and electrons.

"The magnetic field is responsible for energy cascades," said Shaikh. Constrained by magnetic fields, the small eddies serve to "damp" the wave energy in them.

"This is the same kind of thing that happens in a microwave oven," Shaikh said. "Microwaves are damped inside the food and release the energy that makes the food hot."

If small eddies in the solar wind are more efficient than expected at transferring energy, that might help explain the hot particles discovered by instruments aboard Wind and other spacecraft.

Results of this research were published earlier this month in the on-line edition of "Physical Review Letters."

Provided by University of Alabama in Huntsville

Explore further: CERN makes public first data of LHC experiments

add to favorites email to friend print save as pdf

Related Stories

Turmoil, conflicts cloud global energy future

Nov 17, 2014

The International Energy Agency's (IEA) World Energy Outlook 2014, with all its numbers, technical details and geographic breakdowns on oil, gas, coal, and renewables, makes a fundamental point. Advances ...

October was 'bumper' month for Scotland's renewables

Nov 07, 2014

Any way you look at it— the solar PV panels, the solar hot water panels, the wind turbines—Scotland turned out to have a bumper month for renewables in October. Wind turbines generated an estimated 982,842MWh ...

Sources of the solar wind

Nov 05, 2014

The solar chromosphere is the region between the Sun's surface and its hot, million-degree corona. Within this complex interface zone, only a few thousand kilometers deep, the density of the gas drops by ...

UK wind power share shows record rise

Oct 24, 2014

The United Kingdom wind power production has been enjoying an upward trajectory, and on Tuesday wind power achieved a significant energy production milestone, reported Brooks Hays for UPI. High winds from Hurricane Gonzalo were the force behind wind turbines outproducing nuclear power ...

Recommended for you

New terahertz device could strengthen security

14 hours ago

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

18 hours ago

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

New technique allows ultrasound to penetrate bone, metal

Nov 20, 2014

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.