Research advances nanowire technology for large-scale applications

Feb 26, 2009

(PhysOrg.com) -- Researchers at Northeastern created a network of nanowires that can be scaled up more efficiently and cost-effectively to create displays such as the NASDAQ sign in New York City’s Times Square.

Using Gallium nitride (GaN), a highly effective semiconductor material, the team created, for the first time, a horizontally aligned network of GaN nanowires, which are integral components in the development of electrical circuits in the nanoscale. GaN is currently used to create light-emitting diodes (LED) and blue and ultra-violet emitting lasers.

“Making devices that emit blue light and ultra-violet light is currently very expensive,” said Latika Menon, assistant professor of physics and co-author of the study. “The horizontal structure of the GaN nanowire network will result in a more cost-effective way to advance this technology.”

Electrodes allow for the flow of electricity between GaN nanowires and electrical wires, and the horizontal structure of the GaN nanowire networks are more easily attached to electrodes than vertical networks. In addition, the GaN nanowires have a cubic structure, with optical and transport properties that are more advanced than other nanowire structures, resulting in a more effective electrical circuit.

In terms of manufacturing, these horizontal network patterns can also be scaled up to large wafer sizes that are more compatible with the technology used to integrate them into new nanoelectronic devices. These devices connect nanotechnology and electronic devices to develop smaller and less costly manufacturing processes and products.

The research, published in a recent issue of the “Journal of Materials Chemistry,” was funded by the National Science Foundation (NSF) and the NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing at Northeastern. Other Northeastern researchers participating in this project include physicist Zhen Wu, as well as Myung Gwan Hahm and Yung Joon Jung from the department of mechanical and electrical engineering.

Provided by Northeastern University

Explore further: Dye-sensitized solar cell absorbs a broad range of visible and infrared wavelengths

add to favorites email to friend print save as pdf

Related Stories

Self-charging battery gets boost from nanocomposite film

Feb 24, 2014

(Phys.org) —In 2012, a research team at the Georgia Institute of Technology led by Professor Zhong Lin Wang fabricated the first self-charging power pack, or battery, that can be charged without being plugged into a ...

New approach to chip design could yield light speed computing

Feb 25, 2014

Every second, your computer must process billions of computational steps to produce even the simplest outputs. Imagine if every one of those steps could be made just a tiny bit more efficient. "It would save precious nanoseconds," ...

Burning plastic as cleanly as natural gas

Dec 05, 2013

Yiannis Levendis, Distinguished Professor Mechanical and Industrial Engineering at Northeastern, keeps a photograph of a burning plastic foam cup tacked to the wall above his desk. Thick black smoke emanates ...

Recommended for you

A new way to make microstructured surfaces

7 hours ago

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Tough foam from tiny sheets

Jul 29, 2014

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

User comments : 0