Nanotechnologists Gain Powerful New Materials Probe

Feb 25, 2009
Top view of the MACS multiaxis detector system (seen before being enclosed in shielding material). With more neutrons striking the sample and more detectors surrounding it, MACS will greatly extend the capabilities of neutron inelastic scattering as a materials probe technique in nanotechnology and basic science. Principal investigator Collin Broholm of the Johns Hopkins University is seen examining the alignment of one of the 20 detection channels. Copyright: Robert Rathe

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology and The Johns Hopkins University have constructed a unique tool for exploring the properties of promising new materials with unprecedented sensitivity and speed—potentially allowing them to identify quickly those most useful for nanotechnology and industrial applications.

This novel instrument, called the Multi-Axis Crystal Spectrometer (MACS), is a variation on several other spectrometers at the NIST Center for Neutron Research (NCNR), where MACS is located. Like them, MACS bombards a sample of material with low-energy neutrons, which then bounce off the sample’s constituent atoms in specific directions and with specific velocities that reflect the arrangement of atoms within the material. Analyzing how neutrons scatter from a sample can tell scientists a great deal about the material’s physical properties, but older spectrometers are limited to relatively large samples and offer less range in the conditions under which they can be tested.

“These limitations are problematic in nanotechnology,” says Professor Collin Broholm of the Johns Hopkins University, “because oftentimes you grow a new material as a tiny crystal weighing only four or five milligrams, and then you want to see how it behaves under, say, an intense magnetic field.”

Not only can MACS overcome these limitations, but its unique construction allow has additional advantages. Many spectrometers provide just a single “channel” for detection, whereas MACS offers 20, forming a semicircle behind the sample—an arrangement that leads Broholm to compare MACS to a wide-angle, high-resolution lens. These improvements mean that MACS could become a favorite tool for scientists who must choose—and choose quickly—what material to grow next.

“With previous instruments for inelastic scattering from magnetic materials, 80 milligrams is about the smallest sample you can work with,” Broholm says. “But with MACS, we might be able to get detailed information about magnetic interactions even from a nano-structured thin film sample. These are the sort of interactions that nanotechnologists are trying to take advantage of when they design and shape things at the nanoscale.”

Broholm’s team is still fine-tuning MACS and expects to issue a full call for proposals to use the new spectrometer in about six months. Additional information on the NIST Center for Neutron Research www.ncnr.nist.gov/, a national user facility, is available on the facility’s Web site, including a list of available instruments at www.ncnr.nist.gov/instruments/. MACS is supported by the National Science Foundation.

Provided by NIST

Explore further: A crystal wedding in the nanocosmos

add to favorites email to friend print save as pdf

Related Stories

ATV-5 loaded and locked

1 minute ago

ESA's fifth Automated Transfer Vehicle is now scheduled for launch to the International Space Station at 23:44 GMT on 29 July (01:44 CEST 30 July) on an Ariane 5 rocket from Europe's Spaceport in Kourou, ...

Surveillance a part of everyday life

11 minutes ago

Details of casual conversations and a comprehensive store of 'deleted' information were just some of what Victoria University of Wellington students found during a project to uncover what records companies ...

European Central Bank hit by data theft

41 minutes ago

(AP)—The European Central Bank said Thursday that email addresses and other contact information have been stolen from a database that serves its public website, though it stressed that no internal systems or market-sensitive ...

The most precise measurement of an alien world's size

42 minutes ago

Thanks to NASA's Kepler and Spitzer Space Telescopes, scientists have made the most precise measurement ever of the radius of a planet outside our solar system. The size of the exoplanet, dubbed Kepler-93b, ...

Recommended for you

A crystal wedding in the nanocosmos

Jul 23, 2014

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor ...

PPPL studies plasma's role in synthesizing nanoparticles

Jul 22, 2014

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Feb 27, 2009
Neutrons' lack of total electric charge prevents engineers or experimentalists from being able to steer or accelerate them. Charged particles can be accelerated, decelerated, or deflected by electric or magnetic fields. However, these methods have no effect on neutrons except for a small effect of an inhomogeneous magnetic field because of the neutron's magnetic moment.