Physicists find unusual electronic properties in bismuth-based crystalline material

Feb 19, 2009

Physicists at Rutgers University have discovered unusual electronic properties in a material that has potential to improve solar cell efficiency and computer chip design.

The scientists determined that a crystal made of bismuth, iron and oxygen can perform an electronic feat typically not feasible with conventional semiconductors. It acts as a reversible diode - essentially an electronic turnstile that lets current flow in one direction under certain conditions and in the opposite direction under different conditions. Traditional semiconductor diodes are not reversible - the direction of current flow that they allow is fixed during fabrication.

The researchers reported their findings today in a paper published in Science Express, an advance web posting of papers to be published in upcoming issues of the journal Science.

The scientists also discovered that diodes made from this material generate current when light falls on them, making the material a potential candidate for future solar cells. The material appears very sensitive to light at the blue end of the spectrum, a property that has the potential to increase solar cell efficiency.

"We've reached the upper limit of efficiency with today's solar cells," said Sang-Wook Cheong, physics professor in the School of Arts and Sciences and one of the paper's five authors. "While we still don't know how efficiently this material will ultimately perform as a solar cell, we do need to keep investigating alternate technologies that show potential for improvement."

The crystal that Cheong and his colleagues investigated is a ferroelectric material, meaning that the crystal exhibits electrical polarization, or alignment. This polarization, which the scientists believe controls the crystal's ability to act as a diode, is known as a "bulk effect" - a characteristic that permeates the whole crystal. In contrast, traditional semiconductors act as diodes based on electrical effects at the interfaces between two different materials.

By applying an external voltage on the ferroelectric crystal, the polarization of the material reverses, along with the direction that the diode allows electricity to flow.

"This could make computer chip designs more flexible," said Cheong. "Engineers could design a single circuit element that performs one task under a certain configuration and another task under a different configuration."

The material belongs to class of crystalline materials known as perovskites, which have two positive ions of very different atomic sizes (in this case, bismuth and iron) bound to negative ions (in this case, oxygen). It has three oxygen atoms for each bismuth and iron atom.

Source: Rutgers University

Explore further: Improving flash memory: New molecular storage devices could bridge memory gap

add to favorites email to friend print save as pdf

Related Stories

New materials for more powerful solar cells

Nov 12, 2014

Applying a thin film of metallic oxide significantly boosts the performance of solar panel cells—as recently demonstrated by Professor Federico Rosei and his team at the Énergie Matériaux Télécommunications Research ...

Keeping hydrogen from cracking metals

Oct 28, 2014

Metal alloys such as steel and zirconium that are used in pipes for nuclear reactors and oil fields naturally acquire a protective oxide or sulfide layer. But hydrogen penetration can lead to their breakdown ...

Recommended for you

New technique allows ultrasound to penetrate bone, metal

2 hours ago

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

Taming the Boltzmann equation

6 hours ago

Physicists at Ludwig Maximilian University of Munich, Germany, have developed a new algorithm that is capable of solving the Boltzmann equation for systems of self-propelled particles. The new method also ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.