Novel diamond-like films on board NASA satellite

Feb 16, 2009
Novel diamond-like films on board NASA satellite
Thirty Sandia films are in the low-energy sensor (IBEX-Lo) on board NASA’s Interstellar Boundary Explorer (IBEX), which lifted off in October on a mission to study the farthest fringes of the solar system. (Photo by Randy Montoya)

(PhysOrg.com) -- Diamond-like carbon films created at Sandia National Laboratories are helping probe the far boundaries of the solar system as part of a NASA mission to study how the sun's solar wind interacts with the interstellar medium - the matter that exists between the stars within a galaxy.

The films are in the low-energy sensor (IBEX-Lo) on board NASA’s Interstellar Boundary Explorer (IBEX), which lifted off in October on a mission to study the farthest fringes of the solar system. IBEX’s two bucket-sized sensors, covering high and low energy ranges, are designed to capture particles bouncing back toward Earth from the distant boundary between the hot wind from the sun and the cold wall of interstellar space.

The active conversion surface of the low-energy neutral atom detector is coated with Sandia’s diamond-like films created by Tom Friedmann.

“The primary purpose of the diamond-like carbon films is to provide a surface that will ‘efficiently’ ionize energetic neutral atoms,” Friedmann says, “so they can then be detected. Smooth surfaces are required so that the scattered particles can be efficiently collected. If the surface is rough, scattered particles are lost, decreasing efficiency. The diamond-like carbon films have an average surface roughness that is about one angstrom. This is less than the diameter of a carbon atom.”

To create the 30 films aboard the system, Friedmann used pulsed-laser deposition to deposit the films on the conversion surfaces. Carbon was used because it has relatively high conversion efficiency, low sputter yield, and is very smooth, he says. Single crystal diamond has the highest efficiency but is too expensive to grow over large areas and difficult to polish to the extremely low surface roughness needed. The diamond-like carbon films naturally grow smooth and require no polishing.

Friedmann says the project took about one and a half months to complete and he says he was pleased with the outcome. Now the IBEX team is awaiting the results from the mission.

Eric Hertzberg, from Lockheed Martin Advanced Technology Center, approached Friedmann to create the films. Hertzberg is the lead engineer for the IBEX-Lo Sensor. Bob Nemanich, Arizona State University, also played a key role in passivating the films. Friedmann says Sandia uses similar films in studies of electron field emission and in microelectromechanical Systems (MEMS) devices.

Voyager 1, launched in 1977, made the first direct measurements of this boundary (the heliopause) as it was the first spacecraft to leave the inner solar system and head toward interstellar space. Voyager 2, launched the same year, will also relay observations of the boundary, but these measurements are of only one place and time.

IBEX is designed to provide a three-dimensional map of the boundary. IBEX is the latest in NASA’s series of low-cost, rapidly developed Small Explorers spacecraft. The IBEX mission was developed by Southwest Research Institute, led by Principal Investigator David McComas, with a national and international team of partners. NASA’s Goddard Space Flight Center manages the Explorers Program for NASA’s Science Mission Directorate.

Provided by Sandia National Laboratories

Explore further: New complex oxides could advance memory devices

add to favorites email to friend print save as pdf

Related Stories

Mass spectrometry in your hand

Sep 09, 2014

If you're out in the field doing environmental testing, food checks, forensic work, or other chemical analysis, mass spectrometry is an extremely accurate detection tool with one huge drawback: You can lose ...

Voyager map details Neptune's strange moon Triton

Aug 22, 2014

(Phys.org) —NASA's Voyager 2 spacecraft gave humanity its first close-up look at Neptune and its moon Triton in the summer of 1989. Like an old film, Voyager's historic footage of Triton has been "restored" ...

A new way to make sheets of graphene

May 23, 2014

Graphene's promise as a material for new kinds of electronic devices, among other uses, has led researchers around the world to study the material in search of new applications. But one of the biggest limitations ...

Recommended for you

New complex oxides could advance memory devices

Sep 17, 2014

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

Mechanical behavior of twinned aluminum revealed

Sep 15, 2014

A research group has discovered plasticity and work-hardening behaviors in twinned aluminum with incoherent twin boundaries by using in situ nanoindentation technique. The group's paper titled "In situ nanoindentation ...

Invisibility cloaks closer thanks to 'digital metamaterials'

Sep 15, 2014

The concept of "digital metamaterials" – a simple way of designing metamaterials with bizarre optical properties that could hasten the development of devices such as invisibility cloaks and superlenses – is reported in a paper published today in Nature ...

User comments : 0