Batteries get a (nano)boost

Feb 09, 2009

Need to store electricity more efficiently? Put it behind bars. That's essentially the finding of a team of Rice University researchers who have created hybrid carbon nanotube metal oxide arrays as electrode material that may improve the performance of lithium-ion batteries.

With battery technology high on the list of priorities in a world demanding electric cars and gadgets that last longer between charges, such innovations are key to the future. Electrochemical capacitors and fuel cells would also benefit, the researchers said.

The team from Pulickel Ajayan's research group published a paper this week describing the proof-of-concept research in which nanotubes are grown to look - and act - like the coaxial conducting lines used in cables. The coax tubes consist of a manganese oxide shell and a highly conductive nanotube core.

"It's a nice bit of nanoscale engineering," said Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science.

"We've put in two materials - the nanotube, which is highly electrically conducting and can also absorb lithium, and the manganese oxide, which has very high capacity but poor electrical conductivity," said Arava Leela Mohana Reddy, a Rice postdoc researcher. "But when you combine them, you get something interesting."

That would be the ability to hold a lot of juice and transmit it efficiently. The researchers expect the number of charge/discharge cycles such batteries can handle will be greatly enhanced, even with a larger capacity.

"Although the combination of these materials has been studied as a composite electrode by several research groups, it's the coaxial cable design of these materials that offers improved performance as electrodes for lithium batteries," said Ajayan.

"At this point, we're trying to engineer and modify the structures to get the best performance," said Manikoth Shaijumon, also a Rice postdoc. The microscopic nanotubes, only a few nanometers across, can be bundled into any number of configurations. Future batteries may be thin and flexible. "And the whole idea can be transferred to a large scale as well. It is very manufacturable," Shaijumon said.

The hybrid nanocables grown in a Rice-developed process could also eliminate the need for binders, materials used in current batteries that hold the elements together but hinder their conductivity.

The paper was written by Reddy, Shaijumon, doctoral student Sanketh Gowda and Ajayan. It appears in the online version of the American Chemical Society's Nano Letters.

Source: Rice University

Explore further: Engineers discover new method to determine surface properties at the nanoscale

add to favorites email to friend print save as pdf

Related Stories

Algorithm, not live committee, performs author ranking

1 hour ago

Thousands of authors' works enter the public domain each year, but only a small number of them end up being widely available. So how to choose the ones taking center-stage? And how well can a machine-learning ...

Senators get no clear answers on air bag safety

11 hours ago

There were apologies and long-winded explanations, but after nearly four hours of testimony about exploding air bags, senators never got a clear answer to the question most people have: whether or not their ...

Nicaragua: Studies say canal impact to be minimal

12 hours ago

Officials said Thursday that studies have determined a $40 billion inter-oceanic canal across Nicaragua will have minimal impact on the environment and society, and construction is to begin next month.

Recommended for you

New 2-D quantum materials for nanoelectronics

Nov 21, 2014

Researchers at MIT say they have carried out a theoretical analysis showing that a family of two-dimensional materials exhibits exotic quantum properties that may enable a new type of nanoscale electronics.

Thin film produces new chemistry in 'nanoreactor'

Nov 19, 2014

Physicists of the University of Groningen and the FOM Foundation, led by professor Beatriz Noheda, have discovered a new manganese compound that is produced by tension in the crystal structure of terbium manganese oxide. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Nemo
not rated yet Feb 09, 2009
To add context it would be great to hear comparison with the typical batteries of today, energy density for example. My AA rechargable batteries are rated 2200 mAh. Are we talking 10x this?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.