Nano-twinned copper: Chinese-Danish scientists develop super strong nanometals

Feb 04, 2009

Research shows that it is possible to produce copper about 4 times stronger than commercial material - and doing so while also having a ductile material. As the thermal and electrical conductivity are also good, the manufacturing of, for example, electrical conductors with improved mechanical properties looks promising.

The strength of metal depends on the microstructure - the finer the structure the stronger the metal. But one may wonder if this fundamental principle also applies to extremely fine structures?

Materials scientists worldwide have taken up this challenge and now a Chinese-Danish research collaboration has lead to a break-through in the understanding. The results are scientifically important, but also of interest to technology.

As expected, the strength of copper material increases when the structure becomes finer but when the structure dimension becomes smaller than 15 nanometers the metal unexpectedly becomes softer. The physical processes giving rise to this unusual softening have also been identified based on electron microscopy studies of the structure.

Super strong nanometals are perfect for continuation of the research collaboration between China and Denmark and their exploitation in practical applications are indeed promising.

Publication: The results have been published in the journal Science 30 Jan 2009 (vol. 323. no. 5914, pp. 607-610) entitled ”Revealing the maximum strength in nano-twinned copper.”

Provided by Technical University of Denmark

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

add to favorites email to friend print save as pdf

Related Stories

Study reveals how oxygen is like kryptonite to titanium

Feb 05, 2015

Scientists at the University of California, Berkeley, have found the mechanism by which titanium, prized for its high strength-to-weight ratio and natural resistance to corrosion, becomes brittle with just ...

Five ways to put tiny targets in front of an X-ray laser

Feb 03, 2015

X-ray devices have long been used to see the inner structure of things, from bone breaks in the human body to the contents of luggage at airport security checkpoints. But to see life's chemistry and exotic materials at the ...

Winding borders may enhance graphene

Feb 02, 2015

Far from being a defect, a winding thread of odd rings at the border of two sheets of graphene has qualities that may prove valuable to manufacturers, according to Rice University scientists.

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

Researchers enable solar cells to use more sunlight

Feb 25, 2015

Scientists of the University of Luxembourg and of the Japanese electronics company TDK report progress in photovoltaic research: they have improved a component that will enable solar cells to use more energy of the sun and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.