Nano-twinned copper: Chinese-Danish scientists develop super strong nanometals

Feb 04, 2009

Research shows that it is possible to produce copper about 4 times stronger than commercial material - and doing so while also having a ductile material. As the thermal and electrical conductivity are also good, the manufacturing of, for example, electrical conductors with improved mechanical properties looks promising.

The strength of metal depends on the microstructure - the finer the structure the stronger the metal. But one may wonder if this fundamental principle also applies to extremely fine structures?

Materials scientists worldwide have taken up this challenge and now a Chinese-Danish research collaboration has lead to a break-through in the understanding. The results are scientifically important, but also of interest to technology.

As expected, the strength of copper material increases when the structure becomes finer but when the structure dimension becomes smaller than 15 nanometers the metal unexpectedly becomes softer. The physical processes giving rise to this unusual softening have also been identified based on electron microscopy studies of the structure.

Super strong nanometals are perfect for continuation of the research collaboration between China and Denmark and their exploitation in practical applications are indeed promising.

Publication: The results have been published in the journal Science 30 Jan 2009 (vol. 323. no. 5914, pp. 607-610) entitled ”Revealing the maximum strength in nano-twinned copper.”

Provided by Technical University of Denmark

Explore further: Demystifying nanocrystal solar cells

add to favorites email to friend print save as pdf

Related Stories

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Recommended for you

DNA nanoswitches reveal how life's molecules connect

Jan 30, 2015

A complex interplay of molecular components governs almost all aspects of biological sciences - healthy organism development, disease progression, and drug efficacy are all dependent on the way life's molecules ...

Holes in valence bands of nanodiamonds discovered

Jan 28, 2015

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.