Nano-twinned copper: Chinese-Danish scientists develop super strong nanometals

Feb 04, 2009

Research shows that it is possible to produce copper about 4 times stronger than commercial material - and doing so while also having a ductile material. As the thermal and electrical conductivity are also good, the manufacturing of, for example, electrical conductors with improved mechanical properties looks promising.

The strength of metal depends on the microstructure - the finer the structure the stronger the metal. But one may wonder if this fundamental principle also applies to extremely fine structures?

Materials scientists worldwide have taken up this challenge and now a Chinese-Danish research collaboration has lead to a break-through in the understanding. The results are scientifically important, but also of interest to technology.

As expected, the strength of copper material increases when the structure becomes finer but when the structure dimension becomes smaller than 15 nanometers the metal unexpectedly becomes softer. The physical processes giving rise to this unusual softening have also been identified based on electron microscopy studies of the structure.

Super strong nanometals are perfect for continuation of the research collaboration between China and Denmark and their exploitation in practical applications are indeed promising.

Publication: The results have been published in the journal Science 30 Jan 2009 (vol. 323. no. 5914, pp. 607-610) entitled ”Revealing the maximum strength in nano-twinned copper.”

Provided by Technical University of Denmark

Explore further: Tough foam from tiny sheets

add to favorites email to friend print save as pdf

Related Stories

Toward ultimate light efficiency on the cheap

Jul 16, 2014

(Phys.org) —Researchers at the University of Michigan have taken a major stride toward perfectly efficient lighting that is also relatively inexpensive and simple to make. The same material can also reveal ...

NREL bolsters batteries with nanotubes

Jul 01, 2014

Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) are turning to extremely tiny tubes and rods to boost power and durability in lithium-ion batteries, the energy sources for ...

Team bolsters batteries with nanotubes

Jun 17, 2014

Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) are turning to extremely tiny tubes and rods to boost power and durability in lithium-ion batteries, the energy sources for ...

Recommended for you

Tough foam from tiny sheets

10 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0