Nano-twinned copper: Chinese-Danish scientists develop super strong nanometals

Feb 04, 2009

Research shows that it is possible to produce copper about 4 times stronger than commercial material - and doing so while also having a ductile material. As the thermal and electrical conductivity are also good, the manufacturing of, for example, electrical conductors with improved mechanical properties looks promising.

The strength of metal depends on the microstructure - the finer the structure the stronger the metal. But one may wonder if this fundamental principle also applies to extremely fine structures?

Materials scientists worldwide have taken up this challenge and now a Chinese-Danish research collaboration has lead to a break-through in the understanding. The results are scientifically important, but also of interest to technology.

As expected, the strength of copper material increases when the structure becomes finer but when the structure dimension becomes smaller than 15 nanometers the metal unexpectedly becomes softer. The physical processes giving rise to this unusual softening have also been identified based on electron microscopy studies of the structure.

Super strong nanometals are perfect for continuation of the research collaboration between China and Denmark and their exploitation in practical applications are indeed promising.

Publication: The results have been published in the journal Science 30 Jan 2009 (vol. 323. no. 5914, pp. 607-610) entitled ”Revealing the maximum strength in nano-twinned copper.”

Provided by Technical University of Denmark

Explore further: Scientists come closer to the industrial synthesis of a material harder than diamond

add to favorites email to friend print save as pdf

Related Stories

Aligned carbon nanotube / graphene sandwiches

Sep 12, 2014

By in situ nitrogen doping and structural hybridization of carbon nanotubes (CNTs) and graphene via a two-step chemical vapor deposition (CVD), scientists have fabricated nitrogen-doped aligned carbon nanotu ...

Ultracold atoms juggle spins with exceptional symmetry

Sep 03, 2014

The physical behavior of materials is strongly governed by the many electrons which can interact and move inside any solid. While an individual electron is a very simple object, carrying only mass, electric ...

Two dynamos drive Jupiter's magnetic field

Aug 21, 2014

(Phys.org) —Superlatives are the trademark of the planet Jupiter. The magnetic field at the top edge of the cloud surrounding the largest member of the solar system is around ten times stronger than Earth's, ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

Recommended for you

'Small' transformation yields big changes

Sep 15, 2014

An interdisciplinary team of researchers led by Northeastern University has developed a novel method for controllably constructing precise inter-nanotube junctions and a variety of nanocarbon structures in ...

Aligned carbon nanotube / graphene sandwiches

Sep 12, 2014

By in situ nitrogen doping and structural hybridization of carbon nanotubes (CNTs) and graphene via a two-step chemical vapor deposition (CVD), scientists have fabricated nitrogen-doped aligned carbon nanotu ...

User comments : 0