Mixing genomics and geography yields insights into life and environment

Jan 22, 2009

In an upcoming issue of Proceedings of the National Academy of Sciences, Yale researchers used newly developed mathematical models to analyze huge amounts of data on physical characteristics such as temperature and salinity in different ocean habitats and metabolic activity in marine micro-organisms.

They were able to see in unprecedented detail how environment influences molecular changes within living organisms. As the technology dubbed "metagenomics" progresses, scientists might be able to detect environmental change or toxic chemicals not simply by using mechanical sensors or monitoring sensor species, but by examining biological changes within tiny organisms, said Mark Gerstein, the Albert L. Williams professor of biomedical informatics and professor of molecular biophysics & biochemistry and computer science.

"Such biosensors are the modern equivalent of canaries in a coal mine,' Gerstein said.

The research team was headed by computational biology and bioinformatics Ph.D. student Tara A. Gianoulis under the laboratories of Gerstein and Michael Snyder, the Lewis B. Cullman professor of molecular, cellular & developmental biology and professor of molecular biophysics & biochemistry, The team incorporated biochemical and environmental data from the previously published Global Ocean Survey, which catalogued information from 40 different aquatic sites. The GOS data effectively doubled the number of known proteins, and through a statistical analysis of these data, the Yale team was able to infer microbial adaptations to the environment.

"The genomics world has developed amazing technology that has captured a tremendous amount of information about living organisms, giving rise to an era of big data," Gerstein said. "Meanwhile, you have this explosion of geo-spatial information from satellites and global sensors. When key data sets connect these two disparate worlds, you find a subtle richness of connections."

Through a complex statistical analysis, the study showed that organisms switched energy conversion strategies depending on the environment, used components of membranes differently, and provided evidence that factors such as metals may play a large role in how micro-organisms adapt to their environments.

Source: Yale University

Explore further: Quantum compute this—Mathematicians build code to take on toughest of cyber attacks

add to favorites email to friend print save as pdf

Related Stories

Predicting pesticide loads more accurately

27 minutes ago

The EU wants to further improve the authorization process for plant protection products. The different national procedures for this are supposed to be further harmonized. Fraunhofer researchers have developed ...

Researchers unravel secrets of shape-shifting bacteria

Mar 17, 2015

Sixty years ago, Nobel Prize-winning scientist Joshua Lederberg first described a biological mystery. He showed how bacteria could lose the cell walls that define their shapes, potentially becoming less visible ...

Catalyst destroys common toxic nerve agents quickly

Mar 16, 2015

Northwestern University scientists have developed a robust new material, inspired by biological catalysts, that is extraordinarily effective at destroying toxic nerve agents that are a threat around the globe. First used ...

Recommended for you

Boys plagiarise more than girls at school

37 minutes ago

Research by the University of the Balearic Islands has analysed the phenomenon of academic plagiarism among secondary school students. The study, published in the journal Comunicar, confirms that this practi ...

Economist probes the high cost of health care

1 hour ago

When Zack Cooper arrived at Yale as assistant professor of public health and economics, he gained access to a first-of-its-kind dataset. Working with the non-profit Health Care Cost Institute, Cooper and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.