Mixing genomics and geography yields insights into life and environment

Jan 22, 2009

In an upcoming issue of Proceedings of the National Academy of Sciences, Yale researchers used newly developed mathematical models to analyze huge amounts of data on physical characteristics such as temperature and salinity in different ocean habitats and metabolic activity in marine micro-organisms.

They were able to see in unprecedented detail how environment influences molecular changes within living organisms. As the technology dubbed "metagenomics" progresses, scientists might be able to detect environmental change or toxic chemicals not simply by using mechanical sensors or monitoring sensor species, but by examining biological changes within tiny organisms, said Mark Gerstein, the Albert L. Williams professor of biomedical informatics and professor of molecular biophysics & biochemistry and computer science.

"Such biosensors are the modern equivalent of canaries in a coal mine,' Gerstein said.

The research team was headed by computational biology and bioinformatics Ph.D. student Tara A. Gianoulis under the laboratories of Gerstein and Michael Snyder, the Lewis B. Cullman professor of molecular, cellular & developmental biology and professor of molecular biophysics & biochemistry, The team incorporated biochemical and environmental data from the previously published Global Ocean Survey, which catalogued information from 40 different aquatic sites. The GOS data effectively doubled the number of known proteins, and through a statistical analysis of these data, the Yale team was able to infer microbial adaptations to the environment.

"The genomics world has developed amazing technology that has captured a tremendous amount of information about living organisms, giving rise to an era of big data," Gerstein said. "Meanwhile, you have this explosion of geo-spatial information from satellites and global sensors. When key data sets connect these two disparate worlds, you find a subtle richness of connections."

Through a complex statistical analysis, the study showed that organisms switched energy conversion strategies depending on the environment, used components of membranes differently, and provided evidence that factors such as metals may play a large role in how micro-organisms adapt to their environments.

Source: Yale University

Explore further: Decision cascades in social networks

add to favorites email to friend print save as pdf

Related Stories

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

Mars mission boost welcomed by scientists

Dec 15, 2014

University of Leicester scientists, who are closely involved in the European mission to Mars –ExoMars- have welcomed support from the Government for the project.

Plants with pocket-sized genomes

Dec 12, 2014

Members of Genlisea, a genus of carnivorous plants, possess the smallest genomes known in plants. To elucidate genomic evolution in the group as a whole, researchers have now surveyed a wider range of species, ...

Sampling rivers for genes rather than organisms

Dec 11, 2014

Effective environmental management depends on a detailed knowledge of the distribution of species. But taxonomists are in short supply, and some species can be difficult to identify, even for experts. Eawag, ...

March of the penguin genomes

Dec 11, 2014

Two penguin genomes have been sequenced and analyzed for the first time in the open access, open data journal GigaScience. Timely for the holiday season, the study reveals insights into how these birds have b ...

Making light do the work of intricarene synthesis

Dec 04, 2014

Intricarene was first isolated from a Caribbean coral. Now an Ludwig Maximilian University of Munich team has, for the first time, photochemically synthesized the compound in the laboratory, using levels ...

Recommended for you

All together now – three evolutionary perks of singing

Dec 24, 2014

We're enjoying the one time of year when protests of "I can't sing!" are laid aside and we sing carols with others. For some this is a once-a-year special event; the rest of the year is left to the professionals ...

Fish eye sheds light on color vision

Dec 23, 2014

A fish eye from a primitive time when Earth was but one single continent, has yielded evidence of color vision dating back at least 300 million years, researchers said Tuesday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.