The continents as a heat blanket

Jan 22, 2009

Drifting of the large tectonic plates and the superimposed continents is not only powered by the heat-driven convection processes in the Earth's mantle, but rather retroacts on this internal driving processes. In doing so, the continents function as a thermal blanket, which leads to an accumulation of heat underneath, and which in turn can cause the break-up of the super-continents.

These results of numerical modelling have been published by scientists from the GFZ German Research Centre for Geosciences in the latest volume of the journal Physics of the Earth and Planetary Interiors (Vol. 171, S. 313-322).

Alfred Wegener's theory of continental drift was turned up when the driving forces for continental drift were discovered during the 50s and 60s: The enormous heat in the Earth's core and Earth's mantle generates the flow of rocks within the Earth's mantle, a process similar to the movement of warm water in a cooking pot. This heat-driven mass transport is called convection. On the Earth's surface, this process leads not only to plate movement but also to drifting of the continents floating on the plates.

To date however, there has been no realistic mathematical-physical theory describing the interaction between the convective movement in the Earths mantle and the continental drift. V. Trubitsin, M. Kaban und M. Rothacher from the GFZ have now developed a numerical model, based on the current position of the continents, the structures of the Earth's mantle obtained through geophysical measurements, and the current displacement rates on the surface. Hence they were able to calculate the future position of the continents in hundreds of millions of years.

It could be shown that the enormous heat in the Earth's interior does not generally lead to a chaotic mass transport within the Earth's mantle. On the contrary, the continents influence the heat distribution within the Earth's mantle and the associated convective mass flow. In other words the continents act as a thermal blanket causing heat to accumulate beneath. A self-regulating system develops, beginning and ending with a super-continent. This super-continent breaks apart due to heat accumulation which in turn leads to a reorganoization of mantle convection with the pieces ultimately joining again to form a large super-continent.

Paper: V. Trubitsin, M. Kaban and M. Rothacher: "Mechanical and thermal effects of floating continents on the global mantle convection", Physics of the Earth and Planetary Interiors (Vol. 171, S. 313-322).

Source: Helmholtz Association of German Research Centres

Explore further: New detector sniffs out origins of methane

add to favorites email to friend print save as pdf

Related Stories

How was the Earth formed?

Dec 10, 2014

Just how did the Earth—our home and the place where life as we know it evolved—come to be created in the first place? In some fiery furnace atop a great mountain? On some divine forge with the hammer ...

Recommended for you

New detector sniffs out origins of methane

7 hours ago

Methane is a potent greenhouse gas, second only to carbon dioxide in its capacity to trap heat in Earth's atmosphere for a long time. The gas can originate from lakes and swamps, natural-gas pipelines, deep-sea ...

The tides they are a changin'

12 hours ago

Scientists from the University of Southampton have found that ocean tides have changed significantly over the last century at many coastal locations around the world.

Lightning plus volcanic ash make glass

Mar 03, 2015

In their open-access paper for Geology, Kimberly Genareau and colleagues propose, for the first time, a mechanism for the generation of glass spherules in geologic deposits through the occurrence of volcan ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

marjon
5 / 5 (1) Jan 22, 2009
How much geothermal heat escapes into the oceans and the atmosphere?
out7x
1 / 5 (2) Jan 23, 2009
nothing new here. Seafloor spreading and subduction rates are well known.
GrayMouser
not rated yet Jan 28, 2009
So, how much could we drop the global temperature if we sink all the continents?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.