Stars Forming Just Beyond Black Hole’s Grasp at Galactic Center

Jan 05, 2009
This 0.6 by 0.7-degree infrared photograph of the galactic center shows a large population of old, red stars. However, the discovery of two young protostars within a few light-years of the center of the Milky Way shows that stars can form there despite powerful gravitational tides due to the supermassive black hole. Credit: 2MASS/E. Kopan (IPAC/Caltech)

(PhysOrg.com) -- The center of the Milky Way presents astronomers with a paradox: it holds young stars, but no one is sure how those stars got there. The galactic center is wracked with powerful gravitational tides stirred by a 4 million solar-mass black hole. Those tides should rip apart molecular clouds that act as stellar nurseries, preventing stars from forming in place. Yet the alternative - stars falling inward after forming elsewhere - should be a rare occurrence.

Using the Very Large Array of radio telescopes, astronomers from the Harvard-Smithsonian Center for Astrophysics and the Max Planck Institute for Radio Astronomy have identified two protostars located only a few light-years from the galactic center. Their discovery shows that stars can, in fact, form very close to the Milky Way's central black hole.

"We literally caught these stars in the act of forming," said Smithsonian astronomer Elizabeth Humphreys. She presented the finding today at a meeting of the American Astronomical Society in Long Beach, Calif.

The center of the Milky Way is a mysterious region hidden behind intervening dust and gas, making it hard to study. Visible light doesn't make it out, leaving astronomers no choice but to use other wavelengths like infrared and radio, which can penetrate dust more easily.

Humphreys and her colleagues searched for water masers—radio signals that serve as signposts for protostars still embedded in their birth cocoons. They found two protostars located seven and 10 light-years from the galactic center. Combined with one previously identified protostar, the three examples show that star formation is taking place near the Milky Way's core.

Their finding suggests that molecular gas at the center of our galaxy must be denser than previously believed. A higher density would make it easier for a molecular cloud's self-gravity to overcome tides from the black hole, allowing it to not only hold together but also collapse and form new stars.

The discovery of these protostars corroborates recent theoretical work, in which a supercomputer simulation produced star formation within a few light-years of the Milky Way's central black hole.

"We don't understand the environment at the galactic center very well yet," Humphreys said. "By combining observational studies like ours with theoretical work, we hope to get a better handle on what's happening at our galaxy's core. Then, we can extrapolate to more distant galaxies."

Provided by Harvard-Smithsonian Center for Astrophysics

Explore further: Unique pair of supermassive black holes in an ordinary galaxy discovered

add to favorites email to friend print save as pdf

Related Stories

Can you escape the force of gravity?

Apr 08, 2014

It feels like you just can't get away from clingy gravity. Even separated by distances of hundreds of millions of light years, gravity is reaching out to all of us. Is there a place you could go to get away ...

The search for seeds of black holes

Mar 27, 2014

(Phys.org) —How do you grow a supermassive black hole that is a million to a billion times the mass of our sun? Astronomers do not know the answer, but a new study using data from NASA's Wide-field Infrared ...

Clouds seen circling supermassive black holes (w/ video)

Feb 19, 2014

Astronomers see huge clouds of gas orbiting supermassive black holes at the centers of galaxies. Once thought to be a relatively uniform, fog-like ring, the accreting matter instead forms clumps dense enough ...

Recommended for you

A star's early chemistry shapes life-friendly atmospheres

12 hours ago

Born in a disc of gas and rubble, planets eventually come together as larger and larger pieces of dust and rock stick together. They may be hundreds of light-years away from us, but astronomers can nevertheless ...

Image: X-raying the cosmos

Apr 22, 2014

When we gaze up at the night sky, we are only seeing part of the story. Unfortunately, some of the most powerful and energetic events in the Universe are invisible to our eyes – and to even the best optical ...

Mysteries of nearby planetary system's dynamics solved

Apr 22, 2014

Mysteries of one of the most fascinating nearby planetary systems now have been solved, report authors of a scientific paper to be published by the journal Monthly Notices of the Royal Astronomical Society in its ...

User comments : 0

More news stories

First-of-its-kind NASA space-weather project

A NASA scientist is launching a one-to-two-year pilot project this summer that takes advantage of U.S. high-voltage power transmission lines to measure a phenomenon that has caused widespread power outages ...

How many moons does Venus have?

There are dozens upon dozens of moons in the Solar System, ranging from airless worlds like Earth's Moon to those with an atmosphere (most notably, Saturn's Titan). Jupiter and Saturn have many moons each, ...