Efficient organic LEDs a step toward better lights

Dec 23, 2008

(PhysOrg.com) -- For those who love "green" compact fluorescent bulbs but hate their cold light, here's some good news: Researchers are closer to flipping the switch on cheaper, richer LED-type room lighting.

University of Florida materials science and engineers have achieved a new record in efficiency of blue organic light-emitting diodes, or OLEDs. Because blue is essential to white light, the advance helps overcome a hurdle to lighting that is much more efficient than compact fluorescents — but can produce high-quality light similar to standard incandescent bulbs.

"The quality of the light is really the advantage," said Franky So, a UF associate professor of materials science and engineering and the lead investigator on the project.

The U.S. Department of Energy, which funded the research, reported the results on its Web site. Papers about it appeared earlier this year in the journal Applied Physics Letters.

OLEDs are similar to inorganic light emitting devices, or LEDs, but are built with organic semiconductors on large area glass substrates rather than inorganic semiconductor wafers. When used in display screens computer monitors, they have higher efficiency, better color saturation and a larger viewing angle. OLED displays are also used in cell phones, cameras and personal digital assistants. OLED flat panel TVs were introduced by Sony recently.

So and his team's blue OLED achieved a peak efficiency of 50 lumens — a lumen is a measure of brightness perceived by human eyes — per watt. That's a significant step toward the goal of his project: to achieve white light with efficiency higher than 100 lumens per watt.

So said the fact that OLEDs are highly "tunable" — each OLED is an individual light, which means differently colored OLEDs can be combined to produced different shades of light — puts warm, rich light easily within reach. "The quality of the light generated can easily be tuned by using different color emitters" he said. "You can make it red, green, blue or white."

Materials science engineering professor Paul Holloway and assistant professor Jiangeng Xue contributed to the research.

Provided by University of Florida

Explore further: Neutrino trident production may offer powerful probe of new physics

add to favorites email to friend print save as pdf

Related Stories

First graphene-based flexible display produced

Sep 05, 2014

(Phys.org) —A flexible display incorporating graphene in its pixels' electronics has been successfully demonstrated by the Cambridge Graphene Centre and Plastic Logic, the first time graphene has been used ...

Pyramid scheme for brighter organic LEDs

Jun 20, 2014

The most common kind of light bulb in the United States—the incandescent—is only about 5 percent efficient. The phosphorescent organic light-emitting diode, on the other hand, makes light out of 100 percent ...

Move over, silicon, there's a new circuit in town

Jun 17, 2014

(Phys.org) —When it comes to electronics, silicon will now have to share the spotlight. In a paper recently published in Nature Communications, researchers from the USC Viterbi School of Engineering descri ...

Recommended for you

And so they beat on, flagella against the cantilever

6 hours ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

9 hours ago

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

11 hours ago

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

lengould100
5 / 5 (1) Dec 29, 2008
Just to qualify, typical white LED's now available on the market (20 Lumens/watt) are not much more efficient than incandescent (10 L/w), while CFL's are typically MUCH better (75-80 L/w)

The distant future MAY improve LED's but the CFL is immediately available in a fairly broad spectrum of colour temperatures.

http://www.eetime...89501072