Math professor discovers chaos on a 'fluid trampoline'

Dec 22, 2008 By Anne Trafton
A drop of water bounces off a soap film. Image / John Bush/Tristan Gilet

(PhysOrg.com) -- A water drop placed on a soap film that vibrates up and down may bounce as if on a trampoline -- but it's much more than that, according to MIT mathematicians who say the "fluid trampoline" is the simplest fluid example of chaos theory ever explored.

MIT math professor John Bush and visiting student Tristan Gilet built the system in the Applied Math Laboratory, then demonstrated that the drop bouncing may be accurately described with a single simple equation. They report their findings in an upcoming issue of Physical Review Letters.

Their study builds upon the pioneering work of the late Edward Lorenz, an MIT meteorologist who in 1963 discovered chaos in a simplified mathematical model of the atmosphere, now called the Lorenz equations. Known as the father of chaos theory, Lorenz passed away in April 2008 after a distinguished career in MIT's Department of Earth, Atmosphere and Planetary Sciences.

The trademark of chaotic systems is their sensitivity to initial conditions. Any uncertainty in the initial state of a chaotic system will soon be amplified, leading to a loss of predictive power over the system. The chaotic nature of the Earth's atmosphere is responsible for the shortcomings of weather forecasts, which are notoriously untrustworthy beyond a few days.

Since Lorenz's early work, chaos has been discovered in a wide variety of complex systems, from the beating heart to population dynamics, from planetary orbits to the stock market. An interesting philosophical question arises, says Bush: "What is the simplest physical system that exhibits chaotic behavior? What are the minimum ingredients for chaos?"

In the 1970s, MIT math professors Lou Howard and Willem Malkus developed the first mechanical chaotic oscillator in the Applied Math Laboratory, a water wheel whose motion is precisely described by the Lorenz equations. The original water wheel consists of a series of perforated Dixie cups fixed to a tilted wheel: When the cups are filled from above, the wheel trajectory may spin in an unpredictable, chaotic
fashion.

Subsequently, chaos has been observed and studied in a number of simple systems, including a bouncing rubber ball, the double pendulum and the dripping faucet. While the latter system is the simplest fluid oscillator to study experimentally, Bush points out that the fluid trampoline is the simplest when one considers both ease of experiment and theory.

The form of bouncing on the fluid trampoline depends on the amplitude and frequency of the soap film vibration. At low amplitude, the drop bounces with the period of the forcing. Progressively increasing the amplitude leads to the bouncing period doubling then quadrupling. Ultimately, chaos emerges via a so-called period-doubling cascade. The authors demonstrate that the trajectory of the bouncing drop is accurately described by a single second-order differential equation that allows them to rationalize all of the observed bouncing behavior, including the period-doubling transitions to chaos.

Their study is the latest milestone in MIT's long association with chaos theory. Says Bush, "We have brought chaos back to its fluid mechanical roots at MIT."

Gilet, a graduate student from the University of Liege in Belgium, was visiting MIT thanks to the financial support of the FNRS/FRIA and the Belgian government.

Provided by MIT

Explore further: Top-precision optical atomic clock starts ticking

add to favorites email to friend print save as pdf

Related Stories

Fluid mechanics suggests alternative to quantum orthodoxy

Sep 12, 2014

The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum ...

When fluid dynamics mimic quantum mechanics

Jul 29, 2013

In the early days of quantum physics, in an attempt to explain the wavelike behavior of quantum particles, the French physicist Louis de Broglie proposed what he called a "pilot wave" theory. According to ...

Microfluidics: Creating chaos

May 10, 2012

A quiet revolution is taking place in the fields of biology and chemistry. Microfluidic devices, which allow fluid manipulation in micro-scale channels, are slowly but surely finding their place on the lab ...

Wind, war and weathermen

Jun 07, 2011

Well into the 20th century, American weather forecasting was not a rigorous science, but an “art,” as a National Research Council report stated in 1918. Forecasters knew, among other things, that ...

Recommended for you

New filter could advance terahertz data transmission

11 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

11 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

14 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Top-precision optical atomic clock starts ticking

Feb 26, 2015

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Alexa
not rated yet Jan 02, 2009
How the bouncing rubber ball differs from fluid trampoline? It's exactly the same system from physical model perspective.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.