Scientists Demonstrate Microscale System to Study Frustration in Buckled Monolayers of Microspheres

Dec 17, 2008

(PhysOrg.com) -- A team of University of Pennsylvania physicists has demonstrated a simple system based on micron-sized spheres in water to study and control geometric frustration. Their research, published today in the journal Nature, elucidates open questions about frustration and frustration relief and provides a new tool for scientists grappling with these issues in a variety of fields from magnetism to basic statistical mechanics.

Frustration is a feeling known to anyone who has had to choose one course of action from a range of imperfect options. Similar situations arise in nature, and scientific ideas about frustration have been explored to understand materials as varied as water, ceramics, magnets and superconductors.

"Our experimental situation is somewhat akin to the situation faced by a party host aiming to arrange dinner seating so that men are fully surrounded by women and women are fully surrounded by men," Arjun Yodh, professor in the Department of Physics and Astronomy at Penn, said. "If the host chooses tables with odd numbers of seats, then the seating goal cannot be achieved, and some people will be frustrated. If the host chooses square tables, then all of the men can have two female neighbors and all of the women can have two male neighbors, and everyone is happy.

"We created a similar sort of packing frustration by arranging spherical particles in water on a flat triangular lattice, while permitting the particles to freely move small distances out of plane, that is, up or down," Yodh said. "The frustrated material is formed because neighboring particles prefer to move away from one another. Thus, if a particle is in the down position, its neighbors will want to move to the up position. In our case, the microspheres pack on the corners of each triangle, and the lattice is said to be geometrically frustrated. For every triangle, there is always at least one pair of energetically unfavorable neighbors that are both up or both down."

This multiplicity of imperfect choices leads to frustrated materials with many "lowest energy" states in which small perturbations can introduce giant fluctuations with peculiar dynamics. Traditionally, these phenomena have been explored in magnetism, wherein spins on each atom experience frustration as a result of their anti-ferromagnetic near-neighbor interactions and the lattice on which they sit. But it is difficult to observe individual spins directly.

"We use microscopy to directly visualize the configurations and dynamics of all the 'spins' in the sample," said Yilong Han, a member of the Penn team and currently an assistant professor of physics at Hong Kong University of Science and Technology. "This is a major advance over previous experimental work, and, furthermore, we can use small changes in temperature to change the strength of the inter-particle interactions."

The ability to control inter-particle interactions enabled the Penn scientists to control the degree of frustration in the sample and concurrently probe material responses. The team found that the lattice deforms to relieve frustration as the material becomes more strongly frustrated.

"At high compaction or interaction strength, the in-plane lattice deformed into stripes and zigzags so that the microspheres were able to pack more efficiently," Tom Lubensky, professor and chair of the physics and astronomy department at Penn, said. "We were able to understand theoretically why these particular configurations relieved system frustration using a simple geometrical model tiling the plane with isosceles triangles."

"The slow sample dynamics also offer insights into the interplay between frustration relaxation and order," Yair Shokef, a post-doctoral Fellow and theorist with the team, said. "Deep connections between frustrated materials and glasses might exist, and we are now in a position to explore these possible connections."

Since the experimental scenario emulates classic models of spin frustration, the research builds a novel connection between two very different fields of physics: soft matter and frustrated magnetism. In the near future, novel energy landscapes can be created for the microspheres using laser tweezers and enabling experimenters to directly probe the role of lattice deformability on the dynamics and creation of structure. Similarly, optical and magnetic traps can be used to "flip" and move individual particles, experiments impossible with traditional magnetic materials.

Provided by University of Pennsylvania

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

Designing exascale computers

Jul 23, 2014

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.