Tiny delivery system with a big impact on cancer cells

Dec 15, 2008
A new group of nanocomposite particles could lead to improved anti-cancer drugs, researchers report. Credit: Hari S. Muddana

Researchers in Pennsylvania are reporting for the first time that nanoparticles 1/5,000 the diameter of a human hair encapsulating an experimental anticancer agent, kill human melanoma and drug-resistant breast cancer cells growing in laboratory cultures. The discovery could lead to the development of a new generation of anti-cancer drugs that are safer and more effective than conventional chemotherapy agents, the scientists suggest. The research is scheduled for the Dec. 10 issue of ACS' Nano Letters.

In the new study, Mark Kester, James Adair and colleagues at Penn State's Hershey Medical Center and University Park campus point out that certain nanoparticles have shown promise as drug delivery vehicles. However, many of these particles will not dissolve in body fluids and are toxic to cells, making them unsuitable for drug delivery in humans. Although promising as an anti-cancer agent, ceramide also is insoluble in the blood stream making delivery to cancer cells difficult.

The scientists report a potential solution with development of calcium phosphate nanocomposite particles (CPNPs). The particles are soluble and with ceramide encapsulated with the calcium phosphate, effectively make ceramide soluble. With ceramide encapsulated inside, the CPNPs killed 95 percent of human melanoma cells and was "highly effective" against human breast cancer cells that are normally resistant to anticancer drugs, the researchers say.

Penn State Research Foundation has licensed the calcium phosphate nanocomposite particle technology known as "NanoJackets" to Keystone Nano, Inc. MK and JA are CMO and CSO, respectively.

Article: "Calcium Phosphate Nanocomposite Particles for In Vitro Imaging and Encapsulated Chemotherapeutic Drug Delivery to Cancer Cells", pubs.acs.org/stoken/presspac/p… ll/10.1021/nl802098g

Provided by ACS

Explore further: Nanoparticles release drugs to reduce tooth decay

Related Stories

Nano packages for anti-cancer drug delivery

Mar 18, 2015

Cancer stem cells are resistant to chemotherapy and consequently tend to remain in the body even after a course of treatment has finished, where they can often trigger cancer recurrence or metastasis. A new ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

Recommended for you

Nanoparticles release drugs to reduce tooth decay

14 hours ago

Therapeutic agents intended to reduce dental plaque and prevent tooth decay are often removed by saliva and the act of swallowing before they can take effect. But a team of researchers has developed a way ...

Combining magnetism and light to fight cancer

18 hours ago

By combining, in a liposome, magnetic nanoparticles and photosensitizers that are simultaneously and remotely activated by external physical stimuli (a magnetic field and light), scientists at the Laboratoire ...

Scientists convert microbubbles to nanoparticles

Mar 30, 2015

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

Designer's toolkit for dynamic DNA nanomachines

Mar 26, 2015

The latest DNA nanodevices created at the Technische Universitaet Muenchen (TUM)—including a robot with movable arms, a book that opens and closes, a switchable gear, and an actuator—may be intriguing ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
1 / 5 (1) Dec 16, 2008
o.k.! Whatever works that can be brought to market!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.