Disappearing Superconductivity Reappears -- in 2-D

Dec 01, 2008
Stripe order in the copper oxide planes involves both a modulation of the charge density (blue), detectable with x-ray diffraction, and a modulation of the arrangement of magnetic dipole moments (spin directions) on copper atoms (magenta arrows), detectable with neutron diffraction.

(PhysOrg.com) -- Scientists studying a material that appeared to lose its ability to carry current with no resistance say new measurements reveal that the material is indeed a superconductor — but only in two dimensions. Equally surprising, this new form of 2-D superconductivity emerges at a higher temperature than ordinary 3-D superconductivity in other compositions of the same material. The research, conducted in part at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, will appear in the November 2008 issue of Physical Review B.

“Our basic research goal is to understand why and how these materials act as superconductors,” said Brookhaven physicist John Tranquada, who led the research. “The ultimate practical goal would be to use that understanding to develop improved bulk superconductors — ones that operate at temperatures warm enough to make them useful for real-world applications such as high-efficiency power lines.”

The basic idea behind superconductivity is that electrons, which ordinarily repel one another because they have like charges, pair up to carry electrical current with no resistance. Conventional metallic superconductors do this at temperatures near absolute zero (0 kelvin or -273 degrees Celsius), requiring costly cooling systems. More recently, scientists have discovered materials that transition to superconductivity at higher temperatures, sparking the hope for future room-temperature devices.

Tranquada and his colleagues have been studying a layered material made of lanthanum, barium, copper, and oxygen (LBCO) where the ratio of barium to copper atoms is exactly 1 to 8. At a range of compositions with lower and higher levels of barium, LBCO acts as a “high-temperature” superconductor, with a peak operating temperature of 32 K. But at the mysterious 1:8 ratio, the transition temperature at which superconductivity sets in drops way down toward absolute zero.

This material exhibits another interesting property: an unusual pattern of charge and magnetism known as “stripes,” which many theorists have long assumed was incompatible with superconductivity.

“For a superconductor, you need charges to be paired and moving coherently to carry a current with no resistance. On the other hand, the ‘stripe’ order suggests the charges are localized in relatively fixed positions,” Tranquada explained. So the presence of alternating stripes of magnetism and charge — which are most apparent in the composition with the 1:8 ratio of barium to copper — seems perfectly consistent with the fact that LBCO’s superconductivity “disappears” at exactly that point.

But earlier Brookhaven studies suggest that the stripes do exist in other, superconducting copper oxides, in a way that is more fluid and therefore harder to detect. Now, the latest measurements suggest that a similarly hard-to-detect form of superconductivity occurs in the LBCO 1:8 composition.

One of the key measurements, made by Brookhaven physicist Qiang Li, was of electrical resistance parallel to the planes of the layered material and also perpendicular to them. At a particular temperature, Li detected a big drop in resistance when the current was flowing parallel to the layers, but not when it was flowing perpendicular to them.

At the same time, Brookhaven physicist Markus Hücker, along with Qiang Li, measured the onset of weak “diamagnetism,” an effect in which magnetic fields are pushed out of the sample. “This is one of the key properties of a superconductor — the Meissner effect,” Tranquada said.

Like the drop in resistance, the Meissner effect occurred in only two dimensions, within the planes.

“Combining these results with a variety of other measurements, we now propose that there is a subtle form of superconductivity confined within the two-dimensional planes of copper oxide in LBCO 1:8,” Tranquada said.

“For some reason,” he continued, “the material is unable to coherently couple that superconductivity between the planes. It’s as if you were in a skyscraper where the elevators don’t work and there aren’t any stairs. You can move within the same floor but you can’t get from one floor to the next. That’s the case for the electron pairs in this material; they can’t move from one layer to the next.”

The scientists are particularly intrigued by this new form of 2-D superconductivity because it sets in at an even higher temperature (40 K) than that at which 3-D superconductivity occurs in other forms of LBCO.

“The ultimate practical goal is to find or create superconductors that can operate at room temperature, thus eliminating the need for costly cooling systems. So research aimed at understanding the features that enhance superconductivity is an important step toward designing superconductors that work at higher temperatures,” Tranquada said.

In addition to Tranquada, Hücker, and Li, co-authors on this study include: Genda Gu, Qian Jie, Jinsheng Wen, Guangyong Xu, Zhijun Xu, and Juan Zhou, all of Brookhaven Lab; Hye Jung Kang of the National Institute of Standards and Technology (NIST); Rüdiger Klingeler and Natalia Tristan of the Leibniz Institute for Solid State and Materials Research, Dresden, Germany; and Martin von Zimmermann of HASYLAB, Germany. This study was supported by DOE’s Office of Science (Basic Energy Sciences) and by the U.S. Department of Commerce.

Related stories:
phys.org/news65279312.html
phys.org/news147.html

Provided by Brookhaven National Laboratory

Explore further: Physicists unlock nature of high-temperature superconductivity

add to favorites email to friend print save as pdf

Related Stories

Finding the 'heart' of an obstacle to superconductivity

Jul 23, 2014

A team at Cornell and Brookhaven National Laboratory has discovered that previously observed density waves that seem to suppress superconductivity are linked to an electronic "broken symmetry," offering an ...

The science that stumped Einstein

Jul 01, 2014

In 1908, the physics world woke up to a puzzle whose layers have continued to stump the greatest scientists of the century ever since. That year, Dutch physicist Kamerlingh Onnes cooled mercury down to -450° ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Democratizing science with high speed networks

Apr 01, 2014

In the burgeoning world of nanotechnology, researchers see many potentially useful properties at the interfaces of materials called metal oxides—from magnetoresistance (the reason a hard drive can write ...

Recommended for you

Mapping the optimal route between two quantum states

10 hours ago

As a quantum state collapses from a quantum superposition to a classical state or a different superposition, it will follow a path known as a quantum trajectory. For each start and end state there is an optimal ...

Spin-based electronics: New material successfully tested

15 hours ago

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

Verifying the future of quantum computing

16 hours ago

Physicists are one step closer to proving the reliability of a quantum computer – a machine which promises to revolutionise the way we trade over the internet and provide new tools to perform powerful simulations.

A transistor-like amplifier for single photons

Jul 29, 2014

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

Assaad33
1 / 5 (2) Dec 01, 2008
WOW
Sean_W
not rated yet Dec 01, 2008
Are there any good graphs showing progress in superconductor discoveries (new records set for upper temperature) over time? While I would be surprised to see a consistent curve like the one for computer processing power it would be interesting to see whether the rate of such discoveries have changed markedly or not.
thales
1 / 5 (1) Dec 01, 2008
Charting the singularity, eh Sean?
Alizee
Dec 01, 2008
This comment has been removed by a moderator.
NeilFarbstein
1 / 5 (1) Dec 01, 2008
what are we supposed to expect eh?
Alexa
1 / 5 (1) Dec 02, 2008
what are we supposed to expect eh?
Well, existence of stripes couldn't be presented as "unusual pattern of charge and magnetism incompatible with superconductivity", because exactly the opposite is known for years. This is example of artificial fabrication of false discoveries.